Kernreaktoren

Steuerung und Betrieb des Reaktors

Der zeitliche Verlauf der Anzahl spaltfähiger Neutronen ist gegeben durch:

$$N(t) = N_0 e^{\mathbf{r} \cdot k_{eff} \cdot t}$$

Um einen stationären Betrieb zu gewährleisten muss dafür gesorgt werden, dass die Reaktivität ρ null bleibt. Für die Regelung mit Hilfe der Steuerstäbe bleibt somit die Zeit einer **Reaktorperiode** *T*. Diese ist in der Praxis mit 0.1 – 80 Sekunden lang genug, um effektiv zu regeln.

Anfahren des Reaktors in Stufen mit $\rho > 0$

Xenonvergiftung nach Abschaltung des Reaktors

Spaltprodukt ¹³⁵Xe ist Absorber für Neutronen ¹³⁵Xe $\rightarrow^{135}Cs$ $\rightarrow^{135}Ba$ ¹³⁵Xe+n $\rightarrow^{136}Xe*$ \rightarrow^{g} ¹³⁶Xe

Beim stationären Betrieb stellt sich eine Gleichgewichtskonzentration von ${}^{135}Xe$ ein. Nach 48 h ist diese abgebaut => Reaktor wieder anfahren.

Abbrand der Brennelemente

- höchste Anreicherung im Außenbereich des Kerns (da hier mehr Verluste)
- Arbeitszyklus unter Volllast ca. 2 Jahre 1/3 der Elemente aus der Mitte (größter Abbrand; geringste Anreicherung) werden entfernt.
- Randelemente werden in die Mitte versetzt und am Rand kommen neue Brennelemente

Anordnung der Brennelemente im Reaktorkern

Liste einiger Forschungsreaktoren

EUROPE	Reactor type	Operated in (upgr. in)	Power (MW)	Thermal flux (n/cm ² s)	Cold source	Hot source
France+FRG+UK Institut Laue-Langevin, Grenoble	HFR	1971	57	1.2.1015	+	+
France Laboratoire Leon Brillouin, Saclay	ORPHEE	1983	14	3·10 ¹⁴	+	+
Denmark Risø	DR-3	1960	10	1.5-1014	+	planned
Germany KFA, Jülich Forschungsreaktor	FRJ-2	1962	23	2·10 ¹⁴	+	henomei A
Germany München after						
planned upgrading	FRM	1957	20	7.1014	+	ASTA N

Kalte Quelle

Druckbehälter gefüllt mit flüssigem H_2 oder D_2 bei Temperaturen zwischen 20 - 30 K

=> Neutronen einer Energie von ca. 6Å

Geschwindigkeitsspektrum der Neutronen

Energieverteilung für Neutronen bei 293 K: k_BT : 25 meV; $v_0 = 2200$ m/s

Maxwell`sche Geschwindigkeitsverteilung:

$$N(E)d(E) = A \frac{E^{1/2}}{(k_B T)^{2/3}} e^{-E/k_B T} dE$$

mit $\frac{1}{2} m_n v_0^2 = k_B T \longrightarrow v_0 = \sqrt{\frac{2K_B T}{m_n}}$

Neutronenquellen

Neutronenerzeugung durch Spallation

Die Neutronen werden unter Protonenbeschuss abgedampft (bis zu 30 Neutronen pro Kern). Die beschossenen Materialen (Target) sind Schwermetalle die genügend Neutronen abgeben können. Die Kettenreaktion wird aus der kinetischen Energie der Protonen gespeist und bricht nach Verbrauch dieser Energie ab. => keine Neutronen nach Abschalten des Protonenstrahls !

Neutronenquellen

Entwicklung der Neutronenflüsse für Reaktoren und Spallationsquellen

den Faktor 10–100 im Pulsbetrieb

über Spallationsquellen !

Die Steigerung des Neutronenflusses im Reaktor erfolgt im wesentlichen durch:

• Erhöhung des Anreicherungsgrades (bis 95 % ²³⁵U)

• Verkleinerung des Reaktorkerns

=> Erhöhung der Zahl der Spaltungen pro Volumeneinheit => große Leistungsdichten (1.1 MW/dm³)

=> Beschränkung des Neutronenflusses bei Forschungsreaktoren

geplante Spallationsquelle: ESS: European Spallation Source

Spallationsquelle

Schema der ESS

Komponenten der Spallationsquelle

- •Ionenquelle
- •Linearbeschleuniger (LINAC)
- Speicher-und Kompressorring
- Target (Schwermetalle, z.B. Quecksilber)
- Moderatoren
- Strahlrohre => Meßplatz

Da die Spallationsreaktion nur unter Energiezufuhr aufrecht zu erhalten ist, also nach Abschalten der Protonenquelle sofort erlischt, lässt sich der Freisetzung der Neutronen prinzipiell jede gewünschte Zeitstruktur aufprägen (z.B. Pulse mit µs Pulslänge und 10 – 50 Hz Wiederholrate => wichtig Für Neutronenspektroskopie !)

Spallationsquelle

Anforderung an die Spallationsquelle

- Protonen der Energie von etwa 1 GeV haben in Schwermetallen (Blei, Tantal, Wolfram, Quecksilber) eine Reichweite von etwa 50 cm (=> kompakte Neutronenquelle möglich).
- In Abhängigkeit von der Protonenenergie werden im Targetmaterial ca. 20 30 Neutronen frei, die eine ähnliche Energieverteilung wie im Reaktor haben (Energiemittelwert ~ 2 MeV). Damit können die schon bewährten Moderatoren (z.B. Wasser, H₂, etc.) zum Abbremsen auf thermische Energien benutzt werden.

Um den 100-fachen Neutronenfluss eines Höchstflussreaktors zu erzeugen muss der Protonstrahl die folgenden Eigenschaften haben: Mit

```
Reaktorleistung/Energie pro Spaltung = Spaltung/Sekunde = verfügbare Neutronen/Sekunde
```

folgt für einen 57 MW-Reaktor: $2 \cdot 10^{18}$ n/s Für die Spallationsquelle gilt: $(2 \cdot 10^{20} \text{ n/s}) / (20 \text{ n/p}) = 10^{19}$ p/s. Mit 1Ampere = $6.25 \cdot 10^{18}$ p/s folgt: $(10^{19}$ p/s) / $(6.25 \cdot 10^{18}$ p/s/A) = 1.6 A

Dieser Strom muss in einem Puls vorhanden sein. Ionenquellen können aber bestenfalls 100 – 200 mA erzeugen => Pulse in einem **Kompressorring akkumulieren und komprimieren**.

Komponenten der Spallationsquelle (ESS)

Linearbeschleuniger (Linac)

mittlere Strahlleistung: 5 MW Protonenenergie: 1.334 GeV Pulsstrom: 107 mA Pulsrate: 50 Hz Pulsdauer: 2 x 0.6 ms

2 parallel arbeitende Kompressorringe

Pulsrate in beiden Ringen: 50 Hz Pulsdauer bei Extraktion: 2 x 0.4 µs Zahl der Umlaufenden Protonen je Ring: 2.34 ·10¹⁴

Verzweigung nach den Kompressorringen: Station 1: Pulsrate: 50 Hz; Leistung: 4 MW Station 2: Pulsrate: 10 Hz; Leistung: 1 MW

Spallationsquelle

Moderator

Bei Spallationsquellen können in einfacher weise mehrere spezielle Moderatoren eingesetzt werden.

Target

In der geplanten ESS erzeugt der Protonenstrahl eine Leistungsdichte von 2.5 kW/cm³. Probleme: Wärmeabfuhr; mechanische Schockwellen

Lösung: flüssiges Quecksilber

Schwermetall (viele Neutronen) ➢bei Raumtemperatur flüssig (gute Wärmeabfuhr =>kein sekundäres Kühlmittel,gute mechanische Eigenschaften)

Reflektor

Material: z.B. Blei, Graphit, Beryllium Intensitätsgewinn: ~ Faktor 2

Neutronendetektoren

Neutronendetektion

Da Neutronen neutrale Teilchen sind, können sie nicht direkt über einen Ionisationsprozess nachgewiesen werden. Es muss deshalb erst eine Umwandlung in ionisierende Strahlung erfolgen (Konversion => **Neutronenkonverter**).

Neutronendetektoren für Kristallographie

➢ Vieldrahtproportionalkammer (Multi Wire Proportional Chamber; MWPC)

Speicherfolien (Image Plates)

Halbleiterdetektoren (CCD)

in Kombination mit Konverterfolien

Neutronenkonverter

- ➢ geringer Fluss der Neutronen erfordert Verstärkungseffekte bei der Detektion
- ➢ gasförmige und feste Konverter: Einfangquerschnitte und Reichweite der Neutronen im
- Konvertermaterial bestimmen die Dicke der Konverterschichten und damit die Genauigkeit in der Ortsauflösung
- Für Kristallographie ist keine Energieauflösung nötig (bzw. keine schnelle Signaldetektion wie bei der Flugzeitanalyse)

Neutronendetektoren

Schema einer Vieldrahtproportionalkammer

C. Schulz, Diss, Fu-Berlin

Prinzip der Vieldrahtkammer

Zählgas: ³He, ¹⁰BF₃ Spaltprodukte erzeugen Elektronen-Ionenpaare Elektronen werden durch eine elektrisches Feld auf Anodendrähten gesammelt und nachgewiesen Quenchgas: CF₄ Abbremsung der Spaltprodukte ohne elektronische Anregung (Schwingungen, Rotation, Tanslation) Verminderung der Reichweite der Spaltprodukte => bessere Ortsauflösung Steigerung der Effizient: Gasmischung unter Druck: ~1-3 bar Absorptionswahrscheinlichkeit: 30-60 % Ortsauflösung: ca. 1–5 mm bei einer

Gesamtfläche von bis zu 0.5 x 0.5 m²

Neutronendetektoren

Festkörperkonverter

Das Konvertermaterial kann in einem Festkörper gemischt werden. Detektion findet außerhalb des Konverters statt.

Reaktion	$\begin{array}{l} \text{Neutronen-} \\ \text{Absorptionslänge } \lambda_{n} \\ \text{Wirkungsquerschnitt} \end{array}$	Reichweite R, Abschwächungslänge λ_{ce} Teilchenenergie [keV]	$\mathrm{R}/\lambda_\mathrm{n},$ $\lambda_\mathrm{ce}/\lambda_\mathrm{n}$
$^{3}\mathrm{He(n,p)t}$	$\lambda_{\rm n} = 7.59 \text{ bar cm}$ 5 333 b	(vgl. $R_p = 0.43$ bar cm in CF_4) p: 573, t: 191	
$^{6}\mathrm{Li}(\mathbf{n},\alpha)\mathbf{t}$	$\begin{array}{c} \lambda_{\rm n} = 230 \; \mu {\rm m} \\ \\ 940 \; {\rm b} \end{array}$	$R_t = 130 \ \mu m$ t : 2 727, α : 2 055	0.57
$^{10}\mathrm{B}(\mathrm{n},lpha)^{7}\mathrm{Li}$	$\lambda_{ m n} = 19.9~\mu{ m m}$ 3 836 b	${ m R}_{lpha}=3.14~\mu{ m m}$ $lpha:1~472,~^7{ m Li}:840~(93.6\%)$	0.16
$^{157}Gd(n,\gamma)^{158}Gd^{*}$ $E^{*} = 7 937$	$\lambda_n = 1.30 \ \mu m$ 255 000 b	$\lambda_{ce} = 11.9 \ \mu m \pm 0.6 \ \mu m$ ce : 29 - 181 (87.3% ± 2.5%)	9.2
$^{155}Gd(n,\gamma)^{156}Gd^{*}$ E [*] = 8 536	$\begin{array}{l} \lambda_{\rm n} = 5.38 \ \mu {\rm m} \\ \\ 61 \ 400 \ {\rm b} \end{array}$	ce : 39 – 191 (84.5% \pm 5%)	
$^{\mathrm{nat}}\mathrm{Gd}(\mathrm{n}{,}\gamma)$	$\lambda_{\mathrm{n}} = 6.72 \ \mu \mathrm{m}$ 49 122 b	$\lambda_{ m ce} = 12.3 \; \mu{ m m} \pm 0.3 \; \mu{ m m}$ $ m ce: 29-191 \; (86.5\% \pm 1\%)$	1.83

Konverter für thermische Neutronen (Werte für $\mathbf{l} = 1.8 \text{ Å}$)

Eigenschaften des Festkörperkonverters

- ➢ hohe Dichte des absorbierenden Materials => dünne Schichten (µm) gute Ortsauflösung
- transparent f
 ür emittierte
 Strahlung (Licht, Elektronen,
 γ-Quanten)

Detektion

- •Photomultiplier/Szintillationsdetektoren
- •Halbleiterzähler

C. Schulz, Diss, Fu-Berlin

Neutronendiffraktometer

Membran-Diffraktometer: V1 BENSC Hahn-Meitner Institut, Berlin

Eigenschaften des V1

Type: 2-axes diffractometer Monochromator: pyrolythic graphite (002), vertically focusing Wavelength: 0.3-0.6 nm (cold neutrons), monochromator angles $2\theta_{\rm M} = 60^{\circ} - 120^{\circ}$ (continously) Monochr.-to-sample distance: 0.8 m - 1.5 m (extendable) Sample-to-detector distance: 0.8 m - 2.0 m Detector: ³He, 20 cm x 20 cm; pixel size 1.5 mm x 1.5mm; height and inclination adjustable

Ausgelegt zur Untersuchung von periodischen Strukturen mit Gitterkonstanten von 10 – 200 Å.

<u>Vergleich von Röntgen – und Neutonenstrahlung</u> <u>in der Strukturaufklärung</u>

Vergleich der Neutronen – mit der Röntgenstreulängen

Element	Neutronen b ~ [10 ¹³ cm]	Röntgenstrahlung b´ [10 ¹³ cm]
$^{1}\mathrm{H}$	-3.74	3.8
² D	6.67	2.8
¹² C	6.65	16.9
¹⁴ N	9.40	19.7
¹⁶ O	5.80	22.5
³¹ P	5.10	42.3
³² S	2.85	45
⁵⁵ Mn	-3.60	70
⁵⁶ Fe	9.51	73
¹⁹⁴ Pt	9.5	220

Die Neutronenstreuung ist eine Spinabhängige Wechselwirkung. Der Kernspin ist über das Periodensystem unregelmäßig verteilt. Deshalb gibt es bei der Neutronenstreuung auch keine Korrelation mit der Ordnungszahl wie bei der Röntgenstreuung.

Neutronenstreuung kann im Streuprozess gut zwischen den **Isotopen H und D unterscheiden**, während Röntgenstreuung gut zwischen **schweren und leichten Elementen unterscheiden** kann.

Streuung mit Elektronen

Für die Streuung mit Elektronen kann die Eigenschaft der negativen Ladung des Elektrons genutzt werden, um mit Hilfe einer Beschleunigungsspannung gezielt eine gewünschte Wellenlänge der Elektronen auszuwählen (de-Broglie-Wellenlänge).

$$I = h_{\sqrt{2m_0 E \left(1 + \frac{E}{2m_0 c^2}\right)}}$$
Energie: $E = e \cdot V$
V: Spannungsdifferenz

Im allgemeinen werden Beschleunigungsspannungen zwischen 50 und 100 kV benutzt, was zu Wellenlängen 0.04 - 0.06 Ångström führt. Verglichen mit Röntgenstrahlung und Neutronen **zeigen Elektronen bei weitem die stärkste Wechselwirkung** mit der Materie. Daher sind auch die atomaren Strukturfaktoren um Faktoren von $10^3 - 10^4$ größer als bei der Röntgenbeugung. Die atomaren Strukturfaktoren sind bei Elektronen proportional zum Quadrat der Atome (=> Kontrastproblem bei Abbildung organischer Proben!). Wegen der intensiven Wechselwirkung von Elektronen in der Materie beträgt **die mittlere freie Weglänge nur ca. 0.24 mm** (z.B. bei 100 keV Elektronen in organischen Proben). Hochauflösende Strukturuntersuchungen sind nur mit Probendicken möglich, die nur ein zehntel dieses Wertes aufweisen.

Eigenschaften der Elektronenbeugung

Strahlenschäden:

Elektronen: ~ 0.5 – 5 e /Å² Röntgenstrahlung: ~ 200 Photonen /Å²

Beugung und Abbildung

Die Elektronenbeugung ist wegen der 10³ –10⁴ größeren atomaren Strukturfaktoren weniger schädigend für die Probe (bei gleicher Beugungsinformation)

Da Elektronen geladene Teilchen sind können für diese Strahlung mit **Hilfe von elektromagnetischer Feldern Linsen konstruiert werden**. Dies führt dazu, daß in einem Elektronenmikroskop sowohl ein **Abbildungsmodus** als auch ein **Beugungsmodus** benutzt werden kann.

Das Elektronenmikroskop

Vergleich: Licht – Elektronenmikroskop (LM /EM)

Im EM sind die Abbildungsfehler relativ groß (Problem: es gibt keine Streulinsen zur Korrektur !). Aus diesem Grund wird nur mit kleinen Streuwinkeln gearbeitet. Dies kann bei sehr kleinen Wellenlängen trotzdem zu guter Auflösung führen (2-3 Å).

- ➢Eine einzelne EM-Aufnahme liefert eine Projektion der Probe
- Rekonstruktion eines 3D-Bildes entsteht durch eine Serie von "gekippten" Proben
- Das Abbild der Probe entsteht durch Interferenz des Primärstrahls mit den gebeugten Strahlen (z.B. Hellfeldaufnahme)
- Die Abbildung ist durch Linsenfehler und für viele Probentypen durch schwachen Kontrast verfälscht bzw. schlecht.

Das Elektronenmikroskop

Strukturuntersuchungen mit periodischen Strukturen (Kristallgitter)

- Kontrast des Beugungsbildes ist besser als des Abbildes, da über viele Einheitszellen gemittelt wird.
- Die Phasen kann man durch Fouriertransformation des Abbildes erhalten.

=> Objektrekonstruktion

Eigenschaften der Elektronenbeugung:

- Aufgrund der intensiven Wechselwirkung wird ein beträchtlicher Teil der Primärintensität in den gebeugten Strahl übertragen (Probleme mit Absorption !)
 - => dynamische Streutheorie im Gegensatz zur

kinematischen Streutheorie, wie i.a. bei Röntgen und Neutronenbeugung)

- Wegen der kleinen Wellenlänge ist die Ewaldkugel nahezu planar
 - => Abbildung eines Kreuzgitters (**Interferenz in der Ebene**, während Röntgen-, und Neutronenbeugung **Raumgitterinterferenzen** aufweisen.

Kristallographie I

Elektronenmikroskop als Diffraktometer

- Blende B blockt den Primärstrahl (Dunkelfeldaufnahme)
- Primärstahl interferiert mit den gebeugten Strahlen (Hellfeldaufnahme)