Geschwindigkeit der Proteinfaltung

Kleine Proteine (1 Domäne; 50-200 AS) können sich in *vitro* prinzipiell im **Millisekundenbereich** (teilweise auch schneller) falten.

Häufig wird jedoch auch für kleine Proteine eine viel langsamere Faltung beobachtet (Sekunden-Minuten). Gründe hierfür (u.a.):

- Disulfidbrückenbildung (Abhängigkeit vom Redoxpotential)
- Aggregation als Konkurrenz zur Faltung
- "cis-trans" Isomerisierung bei X-Prolin-Peptidbindungen
- => führt häufig zu beobachtbaren Intermediaten !

Levinthals Paradoxon

Protein mit 100 AS hat 2¹⁰⁰ mögliche Konformationen. Die Suche des nativen Zustands allein nach dem Zufallsprinzip würde unendlich lange dauern. **Der Faltungsprozeß muß "gerichtet" sein !**

(=> Hierachien, Intermediate, spezielle Energielandschaften => Faltungstrichter)

Komponenten der zeitaufgelösten mehrfarben Spektroskopie

Lichtquellen:

große Intensität bei möglichst vielen Wellenlängen in einem engen Wellenlängenband gepulste Lichtquellen

Blitzlicht Lampen (=> Monochromatisierung des Lichts)

Laser (=> Frequenzverdopplung, Frequenzmischung)

Spiegel und Strahlteiler

hohes selektives Reflexionsvermögen

Aufspaltung des Strahls in Abhängigkeit von der Wellenlänge

oder der Polarisationsrichtung

- Dielektrische Mehrfachspiegel
- Doppelbrechung (dichroitische Spiegel)

Filter, Polarisatoren und Monochromatoren

gute Wellenlängenauflösung, hohe Intensität des Sekundärstrahls

≻Interferenzfilter

≻Reflexionsgitter (Gittermonochromator)

≻Prismen

Doppelbrechende Polarisatoren

Detektoren

hohe Zeitauflösung,
sehr empfindlich (z.B.
"single photon counting")
➢ Photomultiplier
➢ Photodioden, etc.

Gepulste Lichtquellen

Blitzlicht Lampen

- breites Wellenlängenband
- kurze Pulsdauer
- geringe Wiederholrate

Laser

- ➤ sehr schmales Wellenlängenband
- ➤ (sehr) kurze Pulsdauer
- ➢ hohe Wiederholrate

Gepulste Lichtquellen

Komponenten des Lasers

aktives Medium

durch selektive Energiezufuhr wird in einem oder in mehreren Niveaus eine invertierte Besetzungsverteilung erzeugt

Energiepumpe

z.B. Blitzlicht Lampe; Gasentladung; anderer Laser: erzeugt Besetzungsinversion

Resonator

Strahlung wird in wenigen Moden gespeichert (durch Spiegel)

Prinzip des Lasers

l(v) -

Beim Durchlauf des Lichts durch ein Medium spielt der frequenzabhängige Absorptionskoeffizient die entscheidende Rolle für die Intensität des Lichts:

$$I(v,z) = I(v,0) \cdot e^{-a(v)z} \quad \text{mit}$$

$$a(\mathbf{n}) = \left[N_k - \frac{g_k}{g_i} N_i \right] \mathbf{s}(\mathbf{n})$$

Man sieht, dass für $N_i > g_i/g_k N_k$ der Absorptionskoeffizient negativ werden kann. Die laufende Wellen wird dann **nicht geschwächt sondern verstärkt.** Ein Medium, das solche Eigenschaften aufweist (Erzeugung der Inversion) nennt man **aktives Medium**.

Schwellwertbedingung

 $\sigma(v)$: Absorptionsquerschnitt a(v) Absorptionskoeffizient γ : Verlustkoeffizienten ΔN : Inversionsdichte

Verluste •Reflexionsvermögen der Spiegel •Streuung •Beugungsverluste

Prinzip des Lasers

Beispiel eines drei-Niveau-Lasers

Termschema des Rubin-Lasers

aktives Medium

 Al_2O_3 mit Chrom dotiert Cr^{+++} im Grundzustand E_0 Absorption von Licht => E_1 , E2 (kurzlebig) Strahlungsloser Übergang zu E_i (langlebig) $E_i \rightarrow E_0$: Laseremission

Inversion wird erreicht, weil die Übergangszeiten für $E_0 \rightarrow E_{1,2} \rightarrow E_i$ viel kürzer sind, als die für $E_i \rightarrow E_0$ (deshalb i.a. mindestens Drei –Niveaus)

Moden des Laser

Die für den Laserbetrieb notwendige Inversion kann durch gepulst oder kontinuierliche Pumpenergie hervorgerufen werden. Dementsprechend ist die Laseremission **gepulst oder zeitlich kontinuierlich** ("continous wave": cw-Laser).

Elektrische Feldstärke in der Ebene senkrecht zur Resonatorachse

Man kann durch eine geeignete Wahl von *a* (Spaltöffnung) und von *d* die Nettoverstärkung so klein machen, dass sie die Schwellbedingung nicht erfüllen => **Modenselektion**

Moden des Lasers

Einmodenlaser

Um zu erreichen, dass ein Laser nur auf einer Resonanzfrequenz oszilliert müssen zusätzliche frequenzselektierende Elemente (z.B. Etalon) in den Resonator gebracht werden.

Transmission des Etalons:

$$T = \frac{1}{1 + (4R/(1-R)^2) \cdot \sin^2(d/2)}$$

mit dem Reflexionsvermögen R und der Phasenverschiebung δ :

 $\boldsymbol{d} = 2\boldsymbol{p} / \boldsymbol{l} \Delta s$

Man sieht, dass T = 1 wird, wenn $\delta = 2m \cdot \pi$, d.h für alle Frequenzen $v_m = mc/Ds$. Man kann über den Kippwinkel α des Etalons nun $v_r = v_m$ einstellen und damit nur die eine gewünschte Resonanzfrequenz auswählen.

Verschiedene Lasertypen

Die meisten Lasertypen haben feste Oszillationswellenlängen, die den diskreten Übergängen zwischen definierten Niveaus in Atomen oder Molekülen entsprechen.

Festkörperlaser

Lasertyp	aktives Atom bzw. Ion	Wirtskristall	Laserwel- lenlänge (µm)
Rubinlaser	Cr^{++}	Al ₂ O ₃	0,6943
Neodym- Glas-Laser	Nd ⁺⁺⁺	(Saphir) Glas	1,06
Neodym- YAG-Laser	Nd ⁺⁺⁺	$\begin{array}{c} \mathrm{Y}_{3}\mathrm{Al}_{5}\mathrm{O}_{12},\\ \mathrm{CaF}_{2},\mathrm{CaF}_{3} \end{array}$	$1,06 \\ 0,9 - 1,1$
Titan-Sa- phir-Laser	T_{1}^{+++}	Al ₂ O ₃	0,65-1,1
Alexandrit	Cr ⁺⁺⁺	BeAl ₂ O ₄	0,7 -0,83
Kobalt-	Co++	MgF ₂	1,5 -2,1
Holmium-	Ho+++	YAG	2,06
Erbium- Laser	Er+++	YAG	2,9
Farbzentren- Laser	Fehlstellen von Alkali- Ionen	Alkali- Halogenid- Kristall	0,8 – 3,5 je nach Kristall

Lasertypen

- Festkörperlaser
- Flüssigkeitslaser
- Gaslaser

Festkörperlaser

> aktives Medium: Gläser oder Kristalle, die mit anregbaren Atomen bzw. Ionen dotiert sind (Konzentration: 0.1 – 3 %)
> Alle Festkörperlaser werden optisch gepumpt, meist mit Blitzlampen, so dass die meisten gepulst betrieben werden (Pulsdauer ms –µs und mit 1 mJ – 1J Pulsenergien)
> zum Teil breite Durchstimmbereiche (breites Wellenlängenband steht zur Verfügung)

Verschiedene Lasertypen

Auswahl einiger Gaslaser

Lasertyp	Laserwellenlängen	Betriebsart	Leistung
He-Ne-Laser	etwa 10 Wellenlängen von 0,54–3,39 µm	cw	$0, 1 - 100 \mathrm{mW}$
Argonlaser	etwa 20 Wellenlängen zwischen 0,35 – 0,53 μm	cw und gepulst	1 – 100 W cw, einige kW gepulst
CO ₂ -He,N ₂ -Laser	auf etwa 200 Linien 9,5 – 10,3 μm	cw und gepulst	1 W - 10 kW cw, gepulst $\leq 1 \text{ MW}$
CO-Laser	auf etwa 300 Linien zwischen 4,5 – 6 μm	cw und gepulst	einige Watt
Excimer-Laser	XeCl: 308 nm KrF: 248 nm ArF: 193 nm	gepulst, Pulsdauer 2 – 200 ns	Pulsenergien 1 – 300 mJ pro Puls
Chemische Laser	HF, DF: 2–3μm 10–20μm	cw und gepulst	einige kW

Aktives Medium: Gasentladung (z.B. durch stufenweise Elektronenstoßanregung)
 Linienreiche Spektren (je nach Atomsorten in Gasmischungen bis zu 300 Linien)
 hohe Strahlleistungen

Erzeugung kurzer Laserpulse

Güteschaltung von Laserresonatoren

Bei einer Güteschaltung von Laserresonatoren werden während des Pumpvorgangs die Verluste γ künstliche bis zu einem gewählten Zeitpunkt t_s groß gehalten. Zum Zeitpunkt t = t_s werden die Verluste plötzlich auf ihren möglichen Minimalwert reduziert. Dadurch wird die Besetzungsinversion für t > t_s nicht durch induzierte Emission abgebaut und man erreicht wegen andauernder Energiezufuhr sehr hohe Pulsintensitäten. Pulsdauer: ~Nanosekunden; Pulsenergien $10^5 - 10^9$ W

Prinzip einer Güteschaltung des Laserresonators

Modengekoppelte Pulse

Die Lichtwelle der Frequenz v_0 wird im Resonator **intensitätsmoduliert** mit der Frequenz f. Hierbei treten dann Intensitäten nicht nur bei v_0 , sondern auch bei $v_0 + f$ (Seitenbänder) auf. Ist nun der Frequenzabstand δv benachbarter Fundamentalmoden gleich der Modulationsfrequenz f, tragen die Seitenbänder in ihrer Intensität zur induzierten Emission bei (=> **Modenkopplung**).

=> Pulsbreiten im Bereich von Pikosekunden

Nichtlineare Optik: Optische Frequenzverdopplung und Frequenzmischung

Bei genügend kleinen Feldstärken der einfallenden Welle sind die Auslenkung der Elektronen klein und die Rückstellkräfte sind proportional zur Auslenkung. Die induzierten Dipolmomente sind proportional zur Feldstärke.

$$\mathbf{P} = \boldsymbol{e}_0 \boldsymbol{c} \mathbf{E}$$

Dies ist der Bereich der **linearen Optik**. Bei **größeren Lichtintensitäten** (z.B. mit Lasern) kann durchaus ein **nichtlinearer Bereich der Auslenkungen** erreicht werden. In diesem Fall spielen die Symmetrieeigenschaften des Mediums (Suszeptibilität muss als Tensor betrachtet werden) eine wesentliche Rolle.

$$P_{i} = e_{0}(\boldsymbol{c}_{ij}^{(1)}E_{j} + \boldsymbol{c}_{ijk}^{(2)}E_{j}E_{k} + \boldsymbol{c}_{ijkl}^{(3)}E_{j}E_{k}E_{l} + \dots)$$

Aus diesem Grund wird eine monochromatisch einlaufende Welle $\mathbf{E}=\mathbf{E}_0 \cos(\mathbf{w}t-kz)$ im Medium nicht nur Rayleigh-Streuung zeigen, sondern auch Licht höherer harmonischer Frequenzen ($m \cdot \omega$ mit m = 2, 3, 4, ...).

Beispiel der
x-Komponete
$$\longrightarrow P_x = \boldsymbol{e}_0 \left(\frac{1}{2} \, \boldsymbol{c}^{(2)} E_{0x}^2 + \boldsymbol{c}^{(1)} E_{0x} \cos(\boldsymbol{w}t) + \frac{1}{2} \, \boldsymbol{c}^{(2)} E_{0x}^2 \cos(2\boldsymbol{w}t) \right)$$

Nichtlineare Optik: Optische Frequenzverdopplung und Frequenzmischung

Im Gegensatz zur Grundwelle (Frequenz ω) kann die Oberwelle (2ω) in homogenen isotropen Medien in den einzelnen Schichten des Mediums sich **nicht zu einer makroskopischen Welle aufaddieren.** Sie ist gegenphasig zu den Schwingenden Dipolen.

 $v_{ph}(2\omega) = c/n(2\omega) \neq v_{ph}(\omega) = c/n(\omega)$

Phasenanpassung zwischen Grundwelle und Oberwelle in doppeltbrechenden Medien. Mit Hilfe der **Doppelbrechung in anisotropen Medien** ist es möglich, dass z.B. in einer bestimmten Richtung θ_p gegen die optische Achse der Brechungsindex $n_a(2\omega) = n_0(\omega)$ ist. So können sich Erregerwelle und die Sekundärwelle (2ω) in gleiche Richtung mit gleicher Phasengeschwindigkeit ausbreiten und die Oberwellen können sich phasenrichtig zu einer makroskopischen Welle addieren. Das Resultat ist dann eine **optische Frequenzverdopplung. Beispiel**: Rubin-Laser: $\lambda = 690 \text{ nm} \rightarrow \lambda = 345 \text{ nm}$ Durch Kombination von zwei Wellen unterschiedlicher Frequenz kann unter bestimmten Umständen nach dem

obigen Prinzip auch eine **Frequenzmischung** hergestellt werden. => Strahlungsquellen für Spektralbereiche in denen keine Laserlinien liegen !

Optische Pulskompression

Der Brechungsindex von Licht in einer optischen Fiber ist gegeben durch:

 $n(\mathbf{w}, I) = n_0(\mathbf{w}) + n_2 I(t)$ n_0 : lineare Anteil n_2 : nichtlinearer Anteil

Ein Lichtpuls der Dauer ΔT wird durch ein Wellenpaket beschrieben:

$$I(t) = \int_{-\Delta w/2}^{\Delta w/2} I(w) e^{i(wt-kz)} dw$$

Der lineare Anteil des Brechungsindex $n(\omega, I)$ bewirkt bei normaler Dispersion ($dn_0/d\lambda > 0$), dass die roten Spektrallinien eine größere und die blauen eine kleinere Geschwindigkeit haben. Der nichtlineare Anteil von $n(\omega, I)$ bewirkt eine intensitätsabhängige Frequenzverschiebung der Wellen im Puls. Der Puls wird daher spektral breiter (nichtlinearer

Anteil) und läuft zeitlich auseinander (linearer Anteil).

Beim Durchlauf dieses Pulses durch ein Paar paralleler optischer Gitter kann jedoch eine Pulskompression erfolgen !

Prinzip eines optischen

Optische Pulskompression

Ein solch spektral verbreiterter Strahl wird in dem Paar optischer Gitter so reflektiert, dass die roten Anteile unter größerem Winkel β reflektiert werden als die blauen. Aus dem Wegunterschied Δ s und der Gittergleichung: $\lambda = D \cdot (sin \alpha - sin \beta)$ ergibt sich die folgende Abhängigkeit:

$$\frac{d(\Delta s)}{dl} \approx \frac{l/D}{(1-\sin^2 a)^{3/2}} \quad \text{für } \lambda \ll D$$

Prinzip der optischen Pulskompression

Es zeigt sich also, dass der optische Weg mit steigender Wellenlänge zunimmt. Wählt man der Gitteranstand *D* so groß, dass die Verbreiterung des Pulses auf Grund der linearen Dispersion der optischen Fiber überkompensiert wird, erhält man insgesamt eine zeitliche Verkürzung des Pulses (anormale Dispersion => Pulskompression).

Mit dieser Technik kann man Pulsdauern im Bereich von **Femtosekunden** erreichen (Rekord liegt für $\lambda = 600$ nm bei $\Delta \tau = 6$ fs !).

Modelsysteme zur Proteinfaltung / Faltungskinetik

Protein	MW	No-	No	No SH-	Folding-	time range
	[kDa]	AS	Cys.	Bond	Туре	
alpha-lactalbumin	16.2	142	8	4	Intermediate	~0.15 sec (20 sec)
(bovine)						
apomyoglobin	17.2	153	-	-	Intermediate	~100 ms
(sperm whale)						
lysozyme (HEWL)	14.3	129	8	4	Intermediate	~350 ms (20 sec)
cytochrome C	11.7	104	2	-	two-state	~200 ms
(horse)						
Barstar	10.2	89	2	1	two-state	~100 ms
(RNase Inhibitor)						
Cold shock Protein	7.4	67	-	-	two-state	~1 ms
(A,B)						

Disulfidbrücken:

Zeitaufgelöste Techniken zur Proteinfaltung

Anregung schneller Entfaltungs-/Rückfaltungsprozesse für zeitaufgelöste Messungen

schneller trigger

- "Mixing stopped flow", pH-Sprung (sub-Millisekunde)
- ,,rapid flow": ,,pump-pobe"-Messung
- Laser: T-Sprung bei Wellenlänge mit starker Absorption des Wassers (ns)
- Blitzlichtphotolyse, Elektronentransfer (100 fs)

Beobachtung des Gleichgewichts

Schnelle Übergänge (F \Leftrightarrow U) in der nähe des Gleichgewichts [U] = [F] bei kritischen Bedingungen (T_m, GndHCl_{1/2}) => nur mit Einzelmoleküluntersuchung möglich ! Stabilität des Cytochrom c` in Abhängigkeit des elektronischen Zustandes der Eisen-Hämgruppe

Faltungskinetik

Beispiel: Ribonukleaseinhibitor (Barstar)

Rückfaltungsmessungen mit Pseudo-Wildtyp Mutante: P27A/C40A/C82A Barstar (enthält keine Cysteine => keine Disulfidbrücken => schnellere Faltung)

- Ausgangstemperatur: 2 °C (Kälte-denaturiertes Protein)
- T-Sprung mit 200 W Quecksilber-Xenon Lampe => 10° (gefaltetes Protein)

Faltungskinetik

Ausbildung der Sekundärstrukturelemente beobachtet mit zeitaufgelöster IR Spektroskopie

Faltungskinetik des apo-Myoglobin

