
Concept paper for Monitas

from Stefan Hübner
and the Monitas Team∗

$Revision: 1.3 $, 2002-08-17

Abstract
This is a proposal how to design Monitas before actually start the

coding. Collecting the ideas here will enforce to think about the structure
before it is realized in code that cannot be modi�ed later. With a little
bit of luck this allows us to enhance Monitas' functionality quite easy in
the future. And maybe we get a good user manual as side e�ect for free.

Revision 1.x of this concept paper is not describing the �nal version
of the software that will be realized. It is loosely based on the existing
alpha version 0.1 of Monitas and shall be a step by step approach towards
Monitas version 0.99. If improvements to Monitas v0.x and this document
will be in sync, we will have a good documentation of the internal system
structure for Monitas v1.0 (and then this will be called Revision 2.0 of
this document). So in general the major revision number of the concept
paper is 1 higher than of the software, the minor revision numbers are
both increasing but there is no connection between the values.

Contents
1 Basics 3

2 Requirements for Monitas 3
2.1 Start a backup from client . 3
2.2 Start a backup from the server 4
2.3 Restore a backup from client . 4
2.4 Restore a backup from the server 4
2.5 Compare backup from client . 4
2.6 Compare from the server . 5

3 System structure 5
∗Editor of this document is Stefan Hübner <shuebner.mondo@gmx.de>. Please send com-

ments, extensions and proposals to him.

1

4 Message Flows 6
4.1 Flows between Server and Client (IFcs and IFsc) 6

4.1.1 Connection Establishment 6
4.1.2 Backup and Restore Process 6
4.1.3 Connection Termination 6
4.1.4 List backups . 6
4.1.5 List content of a backup 11

4.2 Message Flows between Client and (Graphical)User-Interface (IFcg) 11
4.2.1 (Re-)Connect to a server 12
4.2.2 Start a Backup . 12
4.2.3 Start a Restore . 12
4.2.4 Get list of previous, accessible Backups 12
4.2.5 Get content (�les) of a speci�ed Backup 14
4.2.6 Start a Verify . 14
4.2.7 Start a Compare . 14
4.2.8 Terminate Client . 14

4.3 Message Flows between Server and (Graphical)User-Interface (IFsg) 15
4.4 Message Flows between Server and its Child (IFss and IFsm) . . 15

5 Interfaces 16
5.1 Interface Im to Mondo . 16

5.1.1 Im in Server . 16
5.1.2 Im in Client . 16

5.2 Interface In between Client and Server 16
5.3 Interface Ipc, Client's pipe to the GUI 16
5.4 Interface Ips, Server's pipe to the GUI 17
5.5 Interface Is, IPC of server instances 17

6 Commands at the GUI interfaces 17
6.1 Message Structure . 17
6.2 Implementation Detail . 19
6.3 De�ned Commands . 19

7 Open Issues 19
7.1 Possible Extensions . 20

2

1 Basics

Monitas is an extension to mondo/mindi to deal with remote backups between
TCP/IP connected PCs. Monitas consists of two logical parts: a "client" that
resides on the PC where the �les (to backup/restore) are and a "server" on
another (or the same) PC where the backup is stored.
The backup may be written to/read from a CD, to a �le on a hard-disk (or later
to a revision controlled database).
Both together, server and client, will handle the backup and restore process
in the background. Each is controlled via a pipe to send commands and to
get status information back (error messages, progress information). Though it
is possible to trigger the backup/restore process with these interfaces, they are
mainly designed for graphical (or text based) front-ends which can dock there to
control the process and interact with the user. These front-ends aren't described
here, but the syntax and semantics of the interfaces.
We use a 1:n relation between the server and several clients on di�erent PCs.
That means there exists only one central server that serves all the clients out
there.
Even if this document distinguishes between server and client and the di�erent
roles they play for the backup process, it is possible that both parts use the
same executable as both parts have much code in common. Like gzip, which
is compressing when executed as gzip and decompressing when executed as
gunzip, Monitas will run as server when executed as monitas_server and will
run as client when started as monitas_client.

2 Requirements for Monitas

This chapter contains the basic requirements for the client and the server part
of Monitas.

2.1 Start a backup from client

Necessary input:

1. �les to backup

2. type of the backup (CD, ISO-�le, ...)

3. name of the backup (if not CD)

4. compression (method, client or server-side)

3

2.2 Start a backup from the server
Necessary input:

1. client to address (IP address or name)
2. �les to backup
3. type of the backup (CD, ISO-�le, ...)
4. name of the backup (if not CD)
5. compression (method, client or server-side)

2.3 Restore a backup from client
Necessary input:

1. �les to restore
2. name/location of the backup (CD, ISO-�le, ...)

2.4 Restore a backup from the server
Necessary input:

1. client to address (IP address or name)
2. �les to restore
3. name/location of the backup (CD, ISO-�le, ...)

2.5 Compare backup from client
There are 2 reasons for a compares
a) to guarantee the correct backup (�verify�)
b) to �nd modi�cations of �les since the last backup (�compare�)

In case a) we must do a bit-compare between original �les and their (decom-
pressed) backup, in case b) it's su�cient to generate hash values of every original
�le and its backuped counterpart and compare the hashes (less network tra�c).
To distinguish the di�erent intentions, we call the comparison a) Verify as
it's normally started directly after a backup, and call the case b) Compare
as it is triggered to recognize modi�cations (perhaps to generate an incremental
backup).
Necessary input:

1. name of the backup
2. mode of compare [a) or b)]
3. �les to compare [mode b) only; mode a) will always compare all �les in

the backup]

4

2.6 Compare from the server

Necessary input:

1. client to address (IP address or name)

2. name of the backup

3. mode of compare [a) or b), the modes were described in previous sub-
chapter]

4. �les to compare [mode b) only; mode a) always compares all �les in the
backup]

3 System structure

Figure 3.1 gives an overview about the general structure of Monitas. Monitas'
functionality is mainly split into 2 independent parts: a client component on
the PC where �les are backuped or restored, and a server component to write
the backup on an external medium or read previous backups from an external
medium.
Both parts base on mondo/mindi for accessing �les, doing (de)compression,
creating ISO-�les, writing them to CD/DVD, . . .

 server

fork()

 client #1

 server 1

 server 2

connect
only

 client #2

connect
only

TCP/IP

Pipe or
Queue
to GUI

PC 1

PC 2

PC x

IFcs

IFcs

 IFsc

 IFcg

 IFsc

 IFsc IFsg

 IFcg

IFss

IFsm

IFsm

Pipe or
Queue
to GUI

Pipe or
Queue
to GUI

Interprocess-
communication

 Mondo

 Mondo

 Mondo

 Mondo

 Mondo

...

...

There is a hidden internal interface
between Mondo and the client/server

IFcg from client to GUI
IFcs, IFsc between client and server
IFss from server to subservers
IFsm from subserver to master

Interfaces:

IFsg from server to GUI

Figure 3.1: System structure

At startup, a client connects to the server process to establish the connection:
The client uses a prede�ned (�well known�) port where the server is listening.
When receiving a message at this port the server duplicates itself by using the
system call fork() or clone(). The child process will serve the connecting

5

client on a new allocated port and the parent process will continue waiting for
further clients.
By that mechanism we need only one prede�ned port number and only on the
server PC. Details in the next chapter.

4 Message Flows

This chapter describes the information �ow between Monitas' structural parts.
The �ows are designed to ful�ll the requirements of chapter 2.

4.1 Flows between Server and Client (IFcs and IFsc)

4.1.1 Connection Establishment

Before any backup/restore can start, client and server must introduce each
other. This message �ow between (each) client process and the server (parent)
process only takes place when a client process is started. The client calls the
server to tell him "Here am I" whereupon the server is doubling itself via the
fork() system call. The new created child of the server process will serve
the new connected client from now on, while the parent process of the server
continues waiting for other clients to connect. The connecting procedure is
shown in Figure 4.1.

4.1.2 Backup and Restore Process

The backup and restore procedures are handled between the client and its corre-
sponding child of the server process. Both, backup and restore may be triggered
from server or from client side. The message �ow between server and client for
the backup process is shown in Figure 4.2.
The restore procedure shown in Figure 4.3 is very similar. It may be triggered
either from server or from client side, too.

4.1.3 Connection Termination

When a client has done its job or some errors occurred (or maybe the server
wants to stop running or . . .) the connection can be shutdown in the way that
Figure 4.4 shows.

4.1.4 List backups

Before restoring �les, a client can inquire the server which backups are available.
Since there are several locations where the server may store a backup (on CD, in
local �le(s), (in the future: in a database,) . . .) the client can use the message
�ow de�ned in Figure 4.5 to get a list of all (for this client) accessible backups.

6

client N server

Connect
(clientversion)

well-known port
for server

any
client port

Accept
(new port,

serverversion) new allocated
port

forking and port
allocation were

successful

fork server
allocate new port

if
unsuccessful

Refuse
(reason)

server N

Future
communication only
between client N

and server instance N

establish connection from
client side

wait for next
client to conect

wait for next
client to conect

Figure 4.1: A client connects to the server process

7

client N server N

Backup
(backupname,-type,est.size)

Backup Start

read (and compress)
data

backup activated
from client or server side

read data and
estimate size

Backup
(files,
opts)

(compress and)
 store data

Data End

Backup End
(success)

Backup Request
(files, opts)

backup
activated

from client
side...

...or
activated
from server

side

 Backup
 (files,
 opts)

if OK

Data

if all finished

Aborted
Abort (cause)

Aborted
Abort (cause)

Interrupt by server at any time is possible:

Interrupt by client at any time is possible:

Figure 4.2: Message �ow for Backup

8

client N server N

Restore
(names,sizes)

Restore Start

read backup

restoration of files specified by
 date, version, backup-No, ...

activation from client or server side

open backup(s),
calculate size,
build list with
files that will
be restored

Restore
(files,
opts)

Data End

Restore End
(success)

Restore Request
(files, opts)

restore
activated
from client
side...

...or
activated
from server

side Restore
(files,
opts)

Aborted
Abort (cause)

Aborted
Abort (cause)

(move data to
correct place?)

Data

Interrupt by server at any time is possible:

Interrupt by client at any time is possible:

if correct

(uncompress data,)
 store files

(temporary until
all finished?)

Figure 4.3: Message �ow for Restore

9

client N server for N

Disconnect

allocated port
for the client N

client port

Accept

free port and
other ressources

Terminate this
server instance N

close connection from
client side

free port and
other ressources

close connection from
server side

client N server for N

Disconnect

allocated port
for the client N

client port

Accept

free port and
other ressources

Terminate this
server instance N

free port and
other ressources

Figure 4.4: Terminating the connection between server and client

10

client N server N

ListOfBackups
(backupnames,-types,-sizes, -dates)

list all backups on server side
the client may access

ListBackups
(opts)

GetBackups
(opts)

build list of
available
backups

Figure 4.5: Get list of accessible backups from server

4.1.5 List content of a backup

When doing a nuke restore it's su�cient to address a total backup. But in all
other cases you want to know which �les are in the backup, what their sizes,
modi�cation dates are and what other info is available. To inquire the content
of a speci�c backup �le, the client uses the �ows in Figure 4.6.

client N server N

ListOfContent
(dir/file -names, -sizes, -dates)

list content of one backups

ListBackup-
Content

(backup)

GetContent
(backup)

build list of
files/dirs in
the backup

Figure 4.6: Get content of a speci�c backup from server

4.2 Message Flows between Client and (Graphical)User-
Interface (IFcg)

To interact with the client process running silently in the background, the client
sets up a named pipe when it starts. A Graphical User Interface (GUI) can dock
to that pipe and control the client.
The messages sent through the pipe are text based commands, so the most
primitive user interface will be a console with I/O redirect to the pipe.

11

The prede�ned commands are shown in Chapter 6.

4.2.1 (Re-)Connect to a server

Figure 4.7 shows how the connection between a client and the server is estab-
lished from the Client GUI. If there exists a previous connection, that connection
is closed before building up the new one, as every client can be connected to
one server only at the same time.

GUI client client

Connect
(ServerIP[:port])

Connected

establish connection to server
via GUI from client side

/OR/
NotConnected
([error])

Dis-
connect

Accept
DisConnected

(oldServerIP:port)

only if already connected

Accept
Connect

Figure 4.7: Enable Connection from Client GUI

4.2.2 Start a Backup

When starting a backup, the client needs to know which �les to backup and
some information about the backup itself: what type of backup (boot-able CD-
ROM, ISO-File,. . .), the name/location (/dev/cdwriter, /usr/bkup/�le.tgz,. . .)
and the mode of the backup (compress_clientside=gzip,. . .). The message �ow
is in Figure 4.8.

4.2.3 Start a Restore

If a client knows (by other procedures, see chapter 4.2.4 and 4.2.5) that a certain
backup exists on the server (and the client may access it), it can start restoring
speci�ed �les like shown in Figure 4.9. The �les can be addressed by their exact
path/name (as stored in the backup) or as wildcards (path/* or path/name* �
may be extended in the future).

4.2.4 Get list of previous, accessible Backups

To get a list of available backups the client must ask the server which are
available (maybe speci�c to the requesting client/user). The message �ow is in
Figure 4.10.

12

GUI client client

Backup
(backuptype {e.g. FILE,ISO},
name {e.g x.tgz, /dev/cdrw},

mode {e.g. compressed},
filename[,...])

Progess
(0%)

Start backup with known filenames
via GUI from client side

/OR/
Abort

([error])

Backup
Backup-
Start

DataProgess
(xx%)

DataEndProgess
(100%) Backup-

End(res)BackupDone
(success{OK,error})

read data and
estimate size

read (and compress)
files

Figure 4.8: Start Backup from Client GUI

GUI client client

Restore
(backuptype {e.g. FILE,ISO},
name {e.g x.tgz, /dev/cdrw},

mode {e.g. compressed},
filename/wildcard[,...])

Filelist
(names)

Start restoring via GUI from client side
! The GUI already knows the name of the backup !

Files/Dirs to restore are specified
by name or wildcard

/OR/
Abort

([error])

Restore-
Request

Restore
(names,
 compr.
 sizes)

Data

Progess
(0%)

DataEndProgess
(100%)

BackupDone
(success{OK,error})

StartRestore
Restore-
Start

/OR/
Abort

Progess
(xx%)

move tmp files
to final place

uncompress data
and write

to (temp) files

Figure 4.9: Start Restore from Client GUI

13

GUI client client

GetBackups
()

Get a list of available backups on the server
via GUI from client side

GetBackups

ListOf-
BackupsListOfBackups

(names, types, sizes, dates)

Figure 4.10: Ask Server for available backups

4.2.5 Get content (�les) of a speci�ed Backup

The client knows (maybe via the �ow in Chapter 4.2.4) which backup(s) are
available at the server. To view the content (the �le names, -sizes,. . .) of a
speci�c backup the client can ask the server to deliver this information. The
message �ow is shown in Figure 4.11.

GUI client client

GetContent
(backupname)

Get the content of a specified backup
via GUI from client side

GetContent

ListOf-
ContentListOfContent

(dir+file names, sizes, dates)

Figure 4.11: Ask Server for the content of a backup

4.2.6 Start a Verify

<to be de�ned>

4.2.7 Start a Compare

<to be de�ned>

4.2.8 Terminate Client

It doesn't make sense to close the client-server connection without terminating
the client. Either the client must be connected to another server (procedure
see chapter 4.2.1) if it shall do other backups/restores or the client just keeps

14

connected to the same server (so no changes are necessary :-). Nevertheless if
the client has done its job, it must be shutdown but that concerns both, the
connection and the client . This procedure is shown in Figure 4.12.
Of course you can simply close the GUI of the client. But this won't have any
in�uence to the running client. . .

GUI client client

Quit

Shutdown the client and the
connection to the server
via GUI from client side

Disconnect
Accept

Terminated

free port and
other ressources,
remove the pipe,
close the client

print message,
close the GUI

Figure 4.12: Terminate the client

4.3 Message Flows between Server and (Graphical)User-
Interface (IFsg)

<to be de�ned> Ideas:

N.N. All backup/verify/compare/restore procedures that can be triggered from
client side, too.

Status Show all current connections and its current status (activity).

Monitor Request server to generate (continuous) progress messages to a spec-
i�ed connection.

Info Server noti�es the user about internal processes.

Verbose Modify the level of server's verbosity.

4.4 Message Flows between Server and its Child (IFss and
IFsm)

<to be de�ned> Ideas:

GetClientInfo Server asks server child for info about the connection to a client
(IP:port, current activity).

TerminateConnection Server asks server child to terminate the connection.

15

TerminateNoti�cation Server child noti�es the parent server that it will ter-
minate now.

N.N. All backup/verify/compare/restore procedures that are requested to the
server, but must be executed from a server's child.

5 Interfaces

Figure 3.1 in Section 3 (System Structure) names the de�ned interfaces in re-
spect of their location. E.g. the interface between the server and the client is
called IFcs if you see it as part of the client, and it's called IFsc if it is described
as part of the server. This naming is continued in the software, but of course
the 2 parts must �t together to transmit the information.
To describe this common part (e.g. the format of the data structures) we in-
troduce a second naming scheme here that denominates the matter inbetween.
These names are used in the sources, too. So pay attention to understand the
di�erence: The common parts of the interfaces are named Ixx, their realization
at the two ends are named IFxy.

Interface is connecting
Im ("Mondo") server/client internally with mondo
In ("Network") client and server, IFcs <�> IFsc
Ipc ("Pipe in Client") client to GUI, IFcg <�> external
Ips ("Pipe in Server") server to GUI, IFsg <�> external
Is ("Server interprocess") Server's parent instance with the child instances,

IFss <�> IFsm

Table 5.1: Interfaces

5.1 Interface Im to Mondo

<to be de�ned>

5.1.1 Im in Server

5.1.2 Im in Client

5.2 Interface In between Client and Server

<to be de�ned>

5.3 Interface Ipc, Client's pipe to the GUI

<to be de�ned>

16

5.4 Interface Ips, Server's pipe to the GUI

<to be de�ned>

5.5 Interface Is, IPC of server instances

<to be de�ned>

6 Commands at the GUI interfaces
To interact from a Graphical User Interface (GUI) to the server or client process
running locally, silently in the background, every client and the server (parent
process) sets up a named pipe when it starts. A Graphical User Interface (GUI)
can dock to that pipe and control the client/server.
If not otherwise speci�ed, the server's pipe is /var/run/monitas/server and
a client's pipe is /var/run/monitas/client_nnn with nnn depends upon the
current connection.
(For IPv4 we could use the server's IP:port, e.g. client_192168001001-22345
i.e. 12-digits IP address, dash, 5-digits port of the server's child for that con-
nection).
This allows us to run more than one client on a PC (maybe more than 1 user
is logged in) that can be connected to the same server (IP address) with dif-
ferent ports (server's child's port number) or to di�erent servers (di�erent IP
addresses). Only one server per PC is allowed, but it can handle several connec-
tions in parallel (by several child processes). In most cases, the backup medium
is a very limiting resource (only 1, 2. . . CD-Writer, Tape-Streamer, Database,
. . .) that can be managed much easier by one central instance. Otherwise we
had to expand the resource management (that is already necessary between
parent server and child processes) with more danger to run into dead-locks,
race-conditions and other di�cult-to-debug stu�.
If not denoted otherwise, the description in this chapter is valid for the messages
at the client GUI and the messages at the server GUI.

6.1 Message Structure

The messages sent through the pipe are text based commands, so the most
primitive user interface will be a console with I/O redirect to the pipe.
The used semantic is:
COMMAND [ARG [...]]\n

where

• COMMAND is a prede�ned (case insensitive) command, valid chars: [a-
zA-Z]

17

• ARG is zero or more arguments for COMMAND, each COMMAND has
a prede�ned number of mandatory arguments (some command additional
might have optional arguments)

• COMMAND and ARG is separated by one space ()

• ARGs are separated by one space ()

• ARGs contain of at least one printable character and/or whitespace ([
\t\n])

• an ARG that contains spaces must be surrounded by '. . . ' or �. . . �

• inside '. . . ' following characters must be escaped by a backslash (\) for
their literal meaning:

\' for literal single quote (')
\\ for the backslash (\) itself

to use <c:\stefan's �quote�> as one argument use 'c:\\stefan\'s �quote�'

• inside �. . . � you must not use the double quote character (�)!
There is no escape sequence de�ned for a literal meaning! Surprised? But
this kind of de�nition allows us to use the ARG<c:\hugo rabson's dir\�le.c>
without further modi�cation by simply surrounding it with double quotes:
�c:\hugo rabson's dir\file.c�

• if the ARG itself shall begin with a double quote (�) or single quote (') then
quote the whole argument with '. . . ' (and escape the ' at the beginning).

• if the ARG doesn't contain spaces but contains any quote character(s),
you needn't do anything

• COMMAND line is terminated by a newline character('\n'), an optional
ASCII-Null ('\0') can follow

Possible, future extension:

• Using '\0' instead of ' ' to separate ARGs (and COMMAND) will dispense
with the nasty space quoting. The end of the command line is then marked
by two '\0' instead of '\n'. To distinguish between old and new syntax,
the client can look at the �rst character behind the COMMAND: if it's a
'\0' the GUI uses the new syntax and all responses to the COMMAND
use the new syntax, too. If the character is a space ' ' or newline '\n'
we answer in old (above described) syntax and must pay attention to the
quoting

18

6.2 Implementation Detail

There is much work that is common to all the pipe interfaces that use text based
messages: extract the command, calculate the number of mandatory parame-
ters, split the arguments, parse for escape sequences, check if an arguments �ts
the requested type (e.g. �lename, IP address, port number,. . .), translate the
textual argument into its machine readable format, . . . And equivalent steps
are necessary when we want to create and send a message. And di�erent com-
mands use the same argument types that always must be parsed and checked
in the same way.
At the moment the extent of the complete command set cannot be given, so it
would be the best to keep yet unknown extensions in mind and implement the
pipe interface as a generic one:

• use tables for valid commands (di�erent tables for server- and client-
pipes [or �ags in a common table to ease common syntax for equivalent
server/client commands?])

• each �command� entry contains the number of mandatory and optional
arguments

• each argument refers to a prede�ned type (not only int, string but of �ner
granularity like �lename, dirname, devicename, backupname, portnumber,
. . .) that can be generated and checked for validity by generic routines.

The tables can easily be extended and new commands can introduced with less
e�ort by reusing existing subroutines for the argument handling. (B.t.w. the
table contains all information that is necessary for an generic help function to
each de�ned message.) Of course this only concerns the interface handling, not
the new functionality. But why reinvent the wheel twice?

6.3 De�ned Commands

Table 6.1 shows the de�ned commands to the GUI.
Currently there are only the messages from Figure 4.7 and 4.8 entered in this ta-
ble. But we recognize that the messages notconnected, abort and backupdone
serve the same purpose. We should think about, if we want a streamline small
interface (replace the 3 messages by one) or accept the redundancy. Perhaps
that depends on the connected GUI. A simple command line interface (that
transfers the messages transparently to the user) bene�ts from the di�erent
message names, a graphical user interface on the other side must join the dif-
ferent messages to the same �Not Done! Error� requestor.

7 Open Issues
Here I collect all the ideas that need further analysis. Some solutions may be
written here if they might have side e�ects to the system, I must think about.
Or if I hadn't have the time to insert them at the correct place ;-)

19

If (from/ No of args type of type of type of type of type of
/to GUI) Command (mnd/opt) arg 1 arg 2 arg 3 arg 4 arg 5

C/- connect 1/1 ServerIP Port
-/C disconnected 2/0 ServerIP Port
-/C connected 0
-/C notconnected 1/1 ErrNo ErrorMsg
C/- backup 4/* Bkup type name mode �lepattern . . .
-/CS progress 1/0 percent
-/CS abort 1/1 ErrNo ErrorMsg
-/C backupdone 1/1 ErrNo ErrorMsg

. . . Table is not complete . . .

Table 6.1: Commands at the GUI Interfaces

• How to realize the daemon for client and server side?
It should dock to the pipe between the GUI and the process, so it can
monitor if there is something going on, and if not it can do its job.
If a daemon triggered backup is running, no user interaction is possible,
so no mix up between two backups can happen.

• Security
What should the user be allowed? Start backups? If yes, what �les? Only
�les, he has access to, to prevent snooping system information.
Show contents of other backups?
Restore �les? From which backups? To which destinations?
Backup to CD? Necessary rights to write there? Maybe handled by mondo.
Shall the client always run as root (to access all, if triggered from outside)?
If yes, how assure that no unprivileged user will abuse this?
Shall server run as root? Server child with lower privilege? Same as user
on client side - but then how to realize - user id's from client mustn't exist
on server.

• Use a secure tunnel as connection? How to establish/address tunnel?

7.1 Possible Extensions
• Wildcards for specifying which �les to backup/restore

� Step 1: Standard UNIX Expressions `*' `?' for �lenames not only at
the end of the name

� Step 2: also for directories (Q: does `/*/readme' match e.g.
`/usr/local/share/packet/readme'?)

� Step 3: Regular Expressions (User has circumvent above question)

20

• Distinguish between restore (�les are written to their old places) and ex-
tract (new destination for �le(s) possible).

21

