Polimeri a memoria di forma (SMP)

Principi della memoria di forma

Applicazioni

Produzione e tipi di polimeri

Polimeri a memoria di forma

- I polimeri hanno moduli elastici che vanno dalla bachelite (andiamo verso i vetri) alle gomme più soffici.
- I polimeri a memoria di forma (SMP: Shape Memory Polymers) hanno entrambe le caratteristiche
- Esibiscono una temperature di transizione vetrosa con brusco cambio del modulo di elasticità
- Ad alta temperatura sono soffici e possono venir modellati (cambiando la loro forma)
- Scendendo sotto la Tg ritornano rigidi ma mantengono la forma imposta
- Ritornando ad alta T riprendono la forma originale

Caratteristiche SMP

- Cambio radicale da polimero molto rigido a uno stato più elastomerico
- Possiamo deformare il polimero sopra la Tg fino al 200% e congelare la nuova forma sotto la Tg
- Se riscaldiamo di nuovo sopra la temperatura cosiddetta di switching il polimero senza vincoli, ritorna alla sua forma originale
- La Tg può variare tra i -30°C e i +260°C
- Numero di cicli senza limiti

Come funzionano gli SMP

- Abbiamo bisogno di un polimero funzionalizzato per fissare temporaneamente una deformazione meccanica
- In genere si usano polimeri termosensibili
- I polimeri termoplastici a memoria di forma sono composti da almeno due fasi o blocchi distinti
 - uno con la temperature di transizione più alta (T_{perm}) stabilizza la forma permanente come una rete fisica
 - la seconda fase ha una T_{trans} più bassa (può essere una Tg o di fusione) e serve da switch
 - T_{trans} < T_{perm}, si deformano tra T_{trans} e T_{perm}
- T_{switch} è la temperatura intermedia alla quale si possono deformare e viene stabilita tramite test termomeccanico

Velocità di deformazione/recupero della forma

 Velocità di fissaggio della forma (deformata); dipende dall'abilità del segmento switching (o soft) nel fissare la deformazione meccanica (definita al numero di ciclo N)

 Velocità di recupero della forma tra due cicli N-I ed N

 $R_{\rm r}(N) = \frac{\varepsilon_{\rm u}(N) - \varepsilon_{\rm p}(N)}{\varepsilon_{\rm u}(N) - \varepsilon_{\rm p}(N-1)}.$

Recupero della forma

Recupero della forma controllato

Altro esempio (con un FG-SMP)

 Utilizzando functionally graded shape memory polymers, possiamo controllare il modo in cui la forma viene recuperata, passando attraverso forme intermedie predeterminate

Il recupero della forma con radiazione UV

• Alcuni polimeri possono recuperare la forma in maniera controllata tramite radiazione UV, invece che calore

Applicazioni

Tipi di applicazioni

- Come polimeri a memoria di forma (dal recupero della forma ad attuatori, morphing oppure per impaccare strutture più grandi)
- Come matrici per compositi che diventano a memoria di forma
- Come polimeri biodegradabili per il campo biomedico
- Come materiali a gradiente funzionale per controllare il recupero della forma
- I settori di maggiore applicazione sono:
 - campo biomedico
 - campo aerospaziale
 - campo tessile (tessuti intelligenti)

Fili per sutura biodegradabili

Fili per sutura biodegradabili

- Permette di controllare la forza esercitata dal filo, non troppa per evitare necrosi del tessuto, ma sufficiente per chiudere il tessuto
- Il filo polimerico è anche biodegradabile e si evita un'operazione per la rimozione nel caso di punti interni. Anche i costi dell'operazione calano
- Deformazioni fino a 400% sono raggiunte
- Si tratta di un copolimero con una parte rigida e un segmento mobile (switching) collegate in catena lineare. Un oligo(ε-caprolattone)diolo (soft) e un oligo(ρdioxanone)diolo cristallizabile (hard).
- Ad alta temperatura (41°C) recupera la forma permanente

Esempi: matrici per compositi (nastri)

Longheroni in EMC

• Esempio, longherone con il 3% di deformazione:

St	Longeron Type	(in.)	El _{RT} (lb-in²)	El _{ET} (lb-in²)	(%)	(%)	E _{RT} (psi)	E _{RT} (GPa)	(N ^{2/3} m ^{5/3} /kg)
	Unreinforced	0.25	3210	2822	0.06	0.1	1.67E+07	115.4	159
	"Sock" Reinforced	0.28	3450	2580	0.05	1.0	1.23E+07	84.7	600
	Tape Reinforced	0.30	3687	3340	0.09	2.5	9.27E+06	63.9	916
	Braid Around Non EMC Core	0.25	1193	357	0.19	1.6	6.22E+06	42.9	522
	Four-Square Braid	0.25	2024	549	0.19	1.1	1.06E+07	72.8	578
	Braid Around EMC Core	0.25	1524	390	0.19	1.1	7.95E+06	54.8	478

0.09 0.19

La struttura portante del FalconSAT 3

igure 10: MCT progressive failure analysis of surface

boom.

Morphing applications (compositi)

• Poter cambiare completamente la forma degli oggetti (non solo un'ala intelligente in SMA)

Produzione

- I metodi di produzione sono quelli dei copolimeri e poliuretani. Quindi si differenziano principalmente se termoplastici o termoindurenti
- La forma permanente viene impressa dallo stampo con la reticolazione durante la fabbricazione
- Si possono fabbricare come:
 - pezzi interi (bulk) tramite injection molding (screw) o in genere in stampi
 - compositi per impregnazione, layout e reticolazione in autoclave
 - tessuti con i sistemi di filatura
 - compositi per braiding e successivi trattamenti in autoclave

Tipi di polimeri

- Poliuretani da poliolii e isocianati (Tg tra -40 e 120 °C, controllando la struttura molecolare, il peso molecolare e la composizione)
 - metilene bis(4-fenilisocianato) (MDI) per la parte hard
 - 1,4-butandiolo per la parte soft o switch
- Copolimeri a blocchi:
 - polietilentereftalato + polietilenossidi
- Composti con polimeri SMP e particelle inorganiche:
 - SiC, nerofumo, nanotubi
- Particolato magnetico in SMP termoplastici (es. magnetite in polieteruretano, TFX oppure biodegradabile copolimero PDC, poli-p-dioxanone e poli-E-caprolattone)

Esempi SMP

- a. TFX, polieteruretane sintetizzato da metilene bis-pcicloesilisocianato (H₁₂MDI), I,4 butandiolo (BD) e politetrametilene glicole (PTMG)
- b. Copolimero multiblocco PDC: PPDO, poli-p-dioxanone; TMDI, 2,2(4),4-trimetilesanodiisocianato; PCL, poli-€caprolattone

