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The Rietveld method

• 1964-1966 - Need to refine crystal structures from powder. Peaks too much 
overlapped:

• Groups of overlapping peaks introduced. Not sufficient.

• Peak separation by least squares fitting (gaussian profiles). Not for severe 
overlapping.

• 1967 - First refinement program by H. M. Rietveld, single reflections + 
overlapped, no other parameters than the atomic parameters. Rietveld, Acta 
Cryst. 22, 151, 1967.

• 1969 - First complete program with structures and profile parameters. 
Distributed 27 copies (ALGOL).

• 1972 - Fortran version. Distributed worldwide.

• 1977 Wide acceptance. Extended to X-ray data.

• Today: the Rietveld method is widely used for different kind of analyses, not 
only structural refinements.

• “If the fit of the assumed model is not adequate, the precision and accuracy of the parameters cannot be validly assessed by statistical methods”. 
Prince.



Principles of the Rietveld method

• To minimize the residual function:

• where:
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Non classical Rietveld applications

• Quantitative analysis of crystalline phases (Hill & Howard, J. Appl. Cryst. 20, 
467, 1987)

• Non crystalline phases (Lutterotti et al, 1997)

• Using Le Bail model for amorphous (need a pseudo crystal structure)! 
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Z = number of formula units

M = mass of the formula unit

V = cell volume



Non classical Rietveld applications
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• Microstructure:

• Le Bail, 1985. Profile shape parameters computed from the crystallite size and 

microstrain values (<M> and <!2>1/2)

• More stable than Caglioti formula

• Instrumental function needed

• Popa, 1998 (J. Appl. Cryst. 31, 176). General treatment for anisotropic crystallite 

and microstrain broadening using harmonic expansion.

• Lutterotti & Gialanella, 1998 (Acta Mater. 46(1), 101). Stacking, deformation and 

twin faults (Warren model) introduced.



Rietveld Stress and Texture Analysis (RiTA)

• Characteristics of Texture Analysis:

• Powder Diffraction

• Quantitative Texture Analysis needs single peaks for pole figure meas.

• Less symmetries -> too much overlapped peaks

• Solutions: Groups of peaks (WIMV, done), peak separation (done)

• What else we can do? -> Rietveld like analysis?

• 1992. Popa -> harmonic method to correct preferred orientation in one spectrum.

• 1994. Ferrari & Lutterotti -> harmonic method to analyze texture and residual 

stresses. Multispectra measurement and refinement.

• 1994. Wenk, Matthies & Lutterotti -> Rietveld+WIMV for Rietveld Texture 

analysis.

• 1997. GSAS got the harmonic method (wide acceptance?).



Non classical applications: Texture

From pole figures

Orientation Distribution Function (ODF)

From spectra



Non classical applications: strains & stresses

Fe Cu

• Macro elastic strain tensor (I kind)

• Crystal anisotropic strains (II kind)

C

Macro and micro stresses

Applied macro stresses



The classical Rietveld method

• The function to minimize by a least squares method (non linear):

• the spectrum is calculated by the classical intensity equation:

• The spectrum depends on 

• phases: crystal structure, microstructure, quantity, cell volume, texture, stress, 

chemistry etc.

• instrument geometry characteristics: beam intensity, Lorentz-Polarization, 

background, resolution, aberrations, radiation etc.

• sample: position, shape and dimensions, orientation.

• Each of the quantity can be written in term of parameters that can be refined 
(optimized).
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• The spectrum (at a 2" point i) is determined by:

• a background value

• some reflection peaks that can be described by different terms:

•Diffraction intensity (determines the “height” of the peaks)

• Line broadening (determines the shape of the peaks)

•Number and positions of the peaks

The classical Rietveld method
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The classical Rietveld method

• The more used background in Rietveld refinements is a polynomial function in 
2" :

• N
b
 is the polynomial degree

• a
n
 the polynomial coefficients

• For more complex backgrounds specific formulas are availables

• It is possible to incorporate also the TDS in the background
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The classical Rietveld method

• Starting with the “Diffraction Intensities”, the factors are:

• A scale factor for each phase

• A Lorentz-Polarization factor

• The multiplicity 

• The structure factor

• The temperature factor

• The absorption

• The texture

• Problems: extinctions, absorption contrast, graininess, sample volume and beam 

size, inhomogeneity, etc. 
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The classical Rietveld method

• The scale factor (for each phase) is written in classical Rietveld programs as:

• S
j
 = phase scale factor (the overall Rietveld generic scale factor)

• S
F
 = beam intensity (it depends on the measurement)

• f
j
 = phase volume fraction

• V
j
 = phase cell volume (in some programs it goes in the F factor)

• In Maud the last three terms are kept separated.

! 

Sj = SF
fj

Vj
2! 

Ii
calc = SF

f j

V j

2
Lk Fk, j

2

S j 2"i # 2"k, j( )Pk, j A j + bkgi
k=1

Npeaks

$
j=1

Nphases

$



The classical Rietveld method

• The Lorentz-Polarization factor:

• it depends on the instrument

• geometry

• monochromator (angle #)

• detector

• beam size/sample volume

• sample positioning (angular)

• For a Bragg-Brentano instrument:
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The classical Rietveld method

• Under a generalized structure factor we include:

• The multiplicity of the k reflection (with h, k, l Miller indices): m
k

• The structure factor

• The temperature factor: B
n

• N = number of atoms

• x
n
, y

n
, z

n
 coordinates of the nth atom

• f
n
, atomic scattering factor
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Atomic scattering factor and Debye-Waller

• The atomic scattering factor for X-ray decreases with the diffraction angle and 
is proportional to the number of electrons. For neutron is not correlated to the 
atomic number.

• The temperature factor (Debye-Waller) accelerate the decreases. 



Neutron scattering factors

• For light atoms neutron scattering has some advantages

• For atoms very close in the periodic table, neutron scattering may help 
distinguish them.



The classical Rietveld method

• The absorption factor:

• in the Bragg-Brentano case (thick sample):

•  For the thin sample or films the absorption depends on 2"

• For Debye-Scherrer geometry the absorption is also not constant

• There could be problems for microabsorption (absorption contrast)
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The classical Rietveld method

• The texture (or preferred orientations):

• The March-Dollase formula is used:

• P
MD 

is the March-Dollase parameter

• summation is done over all equivalent hkl reflections (m
k
)

• #n
 is the angle between the preferred orientation vector and the crystallographic plane 

hkl (in the crystallographic cell coordinate system)

• The formula is intended for a cylindrical texture symmetry (observable in B-B 

geometry or spinning the sample)
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The classical Rietveld method

• The profile shape function:

• different profile shape function are available:

• Gaussian (the original Rietveld function for neutrons)

• Cauchy

• Voigt and Pseudo-Voigt (PV)

• Pearson VII, etc.

• For example the PV: 

• the shape parameters are: 
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The classical Rietveld method

• The number of peaks is determined by the symmetry and space group of the 
phase.

• One peak is composed by all equivalent reflections m
k

• The position is computed from the d-spacing of the hkl reflection (using the 
reciprocal lattice matrix):
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Quality of the refinement

• Weighted Sum of Squares:

• R indices (N=number of points, P=number of parameters):

• The goodness of fit:
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The R indices

• The R
wp

 factor is the more valuable. Its absolute value does not depend on the 

absolute value of the intensities. But it depends on the background. With a 
high background is more easy to reach very low values. Increasing the 
number of peaks (sharp peaks) is more difficult to get a good value.

• R
wp

 < 0.1 correspond to an acceptable refinement with a medium complex phase

• For a complex phase (monoclinic to triclinic) a value < 0.15 is good

• For a highly symmetric compound (cubic) with few peaks a value < 0.08 start to 

be acceptable

• With high background better to look at the R
wp

 background subtracted.

• The R
exp

 is the minimum R
wp

 value reachable using a certain number of 

refineable parameters. It needs a valid weighting scheme to be reliable.



WSS and GofF (or sigma)

• The weighted sum of squares is only used for the minimization routines. Its 
absolute value depends on the intensities and number of points.

• The goodness of fit is the ratio between the R
wp

 and R
exp

 and cannot be lower 

then 1 (unless the weighting scheme is not correctly valuable: for example in 
the case of detectors not recording exactly the number of photons or 
neutrons).

• A good refinement gives GofF values lower than 2.

• The goodness of fit is not a very good index to look at as with a noisy pattern 
is quite easy to reach a value near 1.

• With very high intensities and low noise patterns is difficult to reach a value of 
2.

• The GofF is sensible to model inaccuracies.



Why the Rietveld refinement is widely used?

• Pro

• It uses directly the measured intensities points

• It uses the entire spectrum (as wide as possible)

• Less sensible to model errors

• Less sensible to experimental errors

• Cons

• It requires a model

• It needs a wide spectrum

• Rietveld programs are not easy to use

• Rietveld refinements require some experience (1-2 years?)

• Can be enhanced by:

• More automatic/expert mode of operation

• Better easy to use programs



Expert tricks/suggestion

• First get a good experiment/spectrum

• Know your sample as much as possible

• Do not refine too many parameters

• Always try first to manually fit the spectrum as much as possible

• Never stop at the first result

• Look carefully and constantly to the visual fit/plot and residuals during 
refinement process (no “blind” refinement)

• Zoom in the plot and look at the residuals. Try to understand what is causing a 
bad fit.

• Do not plot absolute intensities; plot at iso-statistical errors. Small peaks are 
important like big peaks.

• Use all the indices and check parameter errors.

• First get a good experiment/spectrum


