Introduction to Rietveld refinements

Luca Lutterotti

Department of Materials Engineering and Industrial Technologies

University of Trento - Italy

The Rietveld method

- 1964-1966 Need to refine crystal structures from powder. Peaks too much overlapped:
 - Groups of overlapping peaks introduced. Not sufficient.
 - Peak separation by least squares fitting (gaussian profiles). Not for severe overlapping.
- 1967 First refinement program by H. M. Rietveld, single reflections + overlapped, no other parameters than the atomic parameters. Rietveld, Acta Cryst. 22, 151, 1967.
- 1969 First complete program with structures and profile parameters. Distributed 27 copies (ALGOL).
- 1972 Fortran version. Distributed worldwide.
- 1977 Wide acceptance. Extended to X-ray data.
- Today: the Rietveld method is widely used for different kind of analyses, not only structural refinements.
- "If the fit of the assumed model is not adequate, the precision and accuracy of the parameters cannot be validly assessed by statistical methods".

Principles of the Rietveld method

• To minimize the residual function:

$$WSS = \sum_{i} w_{i} \left(I_{i}^{\text{exp}} - I_{i}^{\text{calc}} \right)^{2}, w_{i} = \frac{1}{I_{i}^{\text{exp}}}$$

• where:

$$I_i^{calc} = S_F \sum_{k} L_k |F_k|^2 S(2\theta_i - 2\theta_k) P_k A + bkg_i$$

 P_k = preferred orientation function $S(2\theta_i - 2\theta_k)$ = profile shape function (PV: η ,HWHM)

$$HWHM^2 = U \tan^2 \theta + V \tan \theta + W$$

$$P_k = \left(r^2 \cos^2 \alpha + \frac{\sin^2 \alpha}{r}\right)^{-3/2}$$

Non classical Rietveld applications

• Quantitative analysis of crystalline phases (Hill & Howard, J. Appl. Cryst. 20,

467, 1987)

$$I_{i}^{calc} = \sum_{n=1}^{Nphases} S_{n} \sum_{k} L_{k} |F_{k,n}|^{2} S(2\theta_{i} - 2\theta_{k,n}) P_{k,n} A + bkg_{i}$$

$$W_{p} = \frac{S_{p} (ZMV)_{p}}{Nphases}$$

$$\sum_{n=1}^{Nphases} S_{n} (ZMV)_{n}$$

Z = number of formula units

M = mass of the formula unit

V = cell volume

- Non crystalline phases (Lutterotti et al, 1997)
 - Using Le Bail model for amorphous (need a pseudo crystal structure)

Non classical Rietveld applications

Microstructure:

- Le Bail, 1985. Profile shape parameters computed from the crystallite size and microstrain values (<M> and <€2>1/2)
 - More stable than Caglioti formula
 - Instrumental function needed
- Popa, 1998 (J. Appl. Cryst. 31, 176). General treatment for anisotropic crystallite and microstrain broadening using harmonic expansion.
- Lutterotti & Gialanella, 1998 (Acta Mater. 46(1), 101). Stacking, deformation and twin faults (Warren model) introduced.

Rietveld Stress and Texture Analysis (RiTA)

- Characteristics of Texture Analysis:
 - Powder Diffraction
 - Quantitative Texture Analysis needs single peaks for pole figure meas.
 - Less symmetries -> too much overlapped peaks
 - Solutions: Groups of peaks (WIMV, done), peak separation (done)
- What else we can do? -> Rietveld like analysis?
 - 1992. Popa -> harmonic method to correct preferred orientation in one spectrum.
 - 1994. Ferrari & Lutterotti -> harmonic method to analyze texture and residual stresses. Multispectra measurement and refinement.
 - 1994. Wenk, Matthies & Lutterotti -> Rietveld+WIMV for Rietveld Texture analysis.
 - 1997. GSAS got the harmonic method (wide acceptance?).

• The function to minimize by a least squares method (non linear):

$$WSS = \sum_{i} w_{i} \left(I_{i}^{\text{exp}} - I_{i}^{calc} \right)^{2}, w_{i} = \frac{1}{I_{i}^{\text{exp}}}$$

• the spectrum is calculated by the classical intensity equation:

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- The spectrum depends on
 - phases: crystal structure, microstructure, quantity, cell volume, texture, stress, chemistry etc.
 - instrument geometry characteristics: beam intensity, Lorentz-Polarization, background, resolution, aberrations, radiation etc.
 - sample: position, shape and dimensions, orientation.
- Each of the quantity can be written in term of parameters that can be refined (optimized).

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} \left(2\theta_{i} - 2\theta_{k,j}\right) P_{k,j} A_{j} + bkg_{i}$$

• The spectrum (at a 2θ point i) is determined by:

- a background value
- some reflection peaks that can be described by different terms:
 - Diffraction intensity (determines the "height" of the peaks)
 - Line broadening (determines the shape of the peaks)
 - Number and positions of the peaks

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \sum_{k=1}^{Npeaks} L_k |F_{k,j}|^2 S_j (2\theta_i - 2\theta_{k,j}) P_{k,j} A_j + bkg_i$$

 The more used background in Rietveld refinements is a polynomial function in 2θ:

$$bkg(2\theta_i) = \sum_{n=0}^{N_b} a_n (2\theta_i)^n$$

- N_h is the polynomial degree
- a the polynomial coefficients
- For more complex backgrounds specific formulas are availables
- It is possible to incorporate also the TDS in the background

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- Starting with the "Diffraction Intensities", the factors are:
 - A scale factor for each phase
 - A Lorentz-Polarization factor
 - The multiplicity
 - The structure factor
 - The temperature factor
 - The absorption
 - The texture
 - Problems: extinctions, absorption contrast, graininess, sample volume and beam size, inhomogeneity, etc.

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_j^2} \sum_{k=1}^{Npeaks} L_k |F_{k,j}|^2 S_j (2\theta_i - 2\theta_{k,j}) P_{k,j} A_j + bkg_i$$

• The scale factor (for each phase) is written in classical Rietveld programs as:

$$S_j = S_F \frac{f_j}{V_j^2}$$

- S_i = phase scale factor (the overall Rietveld generic scale factor)
- $S_F = beam intensity (it depends on the measurement)$
- f_i = phase volume fraction
- V_j = phase cell volume (in some programs it goes in the F factor)
- In Maud the last three terms are kept separated.

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} \left| \mathbf{L}_{k} \mathbf{F}_{k,j} \right|^{2} S_{j} \left(2\theta_{i} - 2\theta_{k,j} \right) P_{k,j} A_{j} + bk g_{i}$$

- The Lorentz-Polarization factor:
 - it depends on the instrument
 - geometry
 - monochromator (angle α)
 - detector
 - beam size/sample volume
 - sample positioning (angular)
- For a Bragg-Brentano instrument:

$$L_p = \frac{1 + P_h \cos^2(2\theta)}{2(1 + P_h)\sin^2\theta\cos\theta} \qquad P_h = \cos^2(2\alpha)$$

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} \boxed{F_{k,j}}^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- Under a generalized structure factor we include:
 - The multiplicity of the k reflection (with h, k, I Miller indices): m_k
 - The structure factor
 - The temperature factor: B

$$|F_{k,j}|^2 = m_k \left| \sum_{n=1}^N f_n e^{-B_n \frac{\sin^2 \theta}{\lambda^2}} \left(e^{2\pi i (hx_n + ky_n + lz_n)} \right) \right|^2$$

- N = number of atoms
- x_n, y_n, z_n coordinates of the nth atom
- f_n, atomic scattering factor

Atomic scattering factor and Debye-Waller

- The atomic scattering factor for X-ray decreases with the diffraction angle and is proportional to the number of electrons. For neutron is not correlated to the atomic number.
- The temperature factor (Debye-Waller) accelerate the decreases.

Neutron scattering factors

- For light atoms neutron scattering has some advantages
- For atoms very close in the periodic table, neutron scattering may help distinguish them.

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

- The absorption factor:
 - in the Bragg-Brentano case (thick sample):

$$A_j = \frac{1}{2\mu}$$
, μ is the linear absorption coefficient of the sample

- For the thin sample or films the absorption depends on 2θ
- For Debye-Scherrer geometry the absorption is also not constant

There could be problems for microabsorption (absorption contrast)

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} \left| F_{k,j} \right|^{2} S_{j} \left(2\theta_{i} - 2\theta_{k,j} \right) P_{k,j} A_{j} + bkg_{i}$$

- The texture (or preferred orientations):
 - The March-Dollase formula is used:

$$P_{k,j} = \frac{1}{m_k} \sum_{n=1}^{m_k} \left(P_{MD}^2 \cos^2 \alpha_n + \frac{\sin^2 \alpha_n}{P_{MD}} \right)^{-\frac{3}{2}}$$

- P_{MD} is the March-Dollase parameter
- summation is done over all equivalent hkl reflections (m_k)
- α_n is the angle between the preferred orientation vector and the crystallographic plane hkl (in the crystallographic cell coordinate system)
- The formula is intended for a cylindrical texture symmetry (observable in B-B geometry or spinning the sample)

$$I_i^{calc} = S_F \sum_{j=1}^{Nphases} \frac{f_j}{V_i^2} \sum_{k=1}^{Npeaks} L_k |F_{k,j}|^2 S_j (2\theta_i - 2\theta_{k,j}) P_{k,j} A_j + bkg_i$$

- The profile shape function:
 - different profile shape function are available:
 - Gaussian (the original Rietveld function for neutrons)
 - Cauchy
 - Voigt and Pseudo-Voigt (PV)
 - Pearson VII, etc.
 - For example the PV:

$$PV(2\theta_{i} - 2\theta_{k}) = I_{n} \left[\eta_{k} \left(\frac{1}{1 + S_{i,k}^{2}} \right) + (1 - \eta_{k}) e^{-S_{i,k}^{2} \ln 2} \right]$$

$$S_{i,k} = \frac{2\theta_{i} - 2\theta_{k}}{\omega_{k}}$$

• the shape parameters are:

Caglioti formula:
$$\omega^2 = W + V \tan \theta + U \tan^2 \theta$$

Gaussianity:
$$\eta = \sum_{n=0}^{N_g} c_n (2\theta)^n$$

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} \left| F_{k,j} \right|^{2} S_{j} \left(2\theta_{i} - 2\theta_{k,j} \right) P_{k,j} A_{j} + bkg_{i}$$

- The number of peaks is determined by the symmetry and space group of the phase.
- One peak is composed by all equivalent reflections m_k
- The position is computed from the d-spacing of the hkl reflection (using the reciprocal lattice matrix):

$$d_{hkl} = \frac{V_C}{\sqrt{s_{11}h^2 + s_{22}k^2 + s_{33}l^2 + 2s_{12}hk + 2s_{13}hl + 2s_{23}kl}}$$

S=:
$$\begin{pmatrix} a^{*2} & a^{*}b^{*}\cos\gamma^{*} & a^{*}c^{*}\cos\beta^{*} \\ a^{*}b^{*}\cos\gamma^{*} & b^{*2} & b^{*}c^{*}\cos\alpha^{*} \\ a^{*}c^{*}\cos\beta^{*} & b^{*}c^{*}\cos\alpha^{*} & c^{*2} \end{pmatrix}$$

Quality of the refinement

Weighted Sum of Squares:

$$WSS = \sum_{i=1}^{N} \left[w_i \left(I_i^{\text{exp}} - I_i^{\text{calc}} \right) \right]^2, \qquad w_i = \frac{1}{\sqrt{I_i^{\text{exp}}}}$$

• R indices (N=number of points, P=number of parameters):

$$R_{wp} = \sqrt{\frac{\sum_{i=1}^{N} \left[w_i \left(I_i^{\text{exp}} - I_i^{\text{calc}} \right) \right]^2}{\sum_{i=1}^{N} \left[w_i I_i^{\text{exp}} \right]^2}}, \qquad w_i = \frac{1}{\sqrt{I_i^{\text{exp}}}}$$

$$R_{\text{exp}} = \sqrt{\frac{(N-P)}{\sum_{i=1}^{N} \left[w_{i} I_{i}^{\text{exp}}\right]^{2}}}, \qquad w_{i} = \frac{1}{\sqrt{I_{i}^{\text{exp}}}}$$

$$GofF = \frac{R_{wp}}{R_{\text{exp}}}$$

The R indices

- The R_{wp} factor is the more valuable. Its absolute value does not depend on the absolute value of the intensities. But it depends on the background. With a high background is more easy to reach very low values. Increasing the number of peaks (sharp peaks) is more difficult to get a good value.
 - \bullet R_{wp} < 0.1 correspond to an acceptable refinement with a medium complex phase
 - For a complex phase (monoclinic to triclinic) a value < 0.15 is good
 - For a highly symmetric compound (cubic) with few peaks a value < 0.08 start to be acceptable
- $_{\bullet}$ With high background better to look at the R $_{_{\rm WP}}$ background subtracted.
- The $R_{\rm exp}$ is the minimum $R_{\rm wp}$ value reachable using a certain number of refineable parameters. It needs a valid weighting scheme to be reliable.

WSS and GofF (or sigma)

- The weighted sum of squares is only used for the minimization routines. Its absolute value depends on the intensities and number of points.
- The goodness of fit is the ratio between the R_{wp} and R_{exp} and cannot be lower then 1 (unless the weighting scheme is not correctly valuable: for example in the case of detectors not recording exactly the number of photons or neutrons).
- A good refinement gives GofF values lower than 2.
- The goodness of fit is not a very good index to look at as with a noisy pattern is quite easy to reach a value near 1.
- With very high intensities and low noise patterns is difficult to reach a value of 2.
- The GofF is sensible to model inaccuracies.

Why the Rietveld refinement is widely used?

- Pro
 - It uses directly the measured intensities points
 - It uses the entire spectrum (as wide as possible)
 - Less sensible to model errors
 - Less sensible to experimental errors
- Cons
 - It requires a model
 - It needs a wide spectrum
 - Rietveld programs are not easy to use
 - Rietveld refinements require some experience (1-2 years?)
- Can be enhanced by:
 - More automatic/expert mode of operation
 - Better easy to use programs

Expert tricks/suggestion

- First get a good experiment/spectrum
- Know your sample as much as possible
- Do not refine too many parameters
- Always try first to manually fit the spectrum as much as possible
- Never stop at the first result
- Look carefully and constantly to the visual fit/plot and residuals during refinement process (no "blind" refinement)
- Zoom in the plot and look at the residuals. Try to understand what is causing a bad fit.
- Do not plot absolute intensities; plot at iso-statistical errors. Small peaks are important like big peaks.
- Use all the indices and check parameter errors.
- First get a good experiment/spectrum

