Introduction to Diffraction analysis

Luca Lutterotti

Department of Materials Engineering and Industrial Technologies

University of Trento - Italy

Outline: basic concepts

- The Bragg law
- The intensity of the diffraction
- Powder diffraction and instrumentation
 - Bragg-Brentano
 - Texture goniometers
 - Residual stress measurements
- Diffraction analyses

Diffraction intensities

• The intensity in a powder diffractometer

$$I_{i}^{calc} = S_{F} \sum_{j=1}^{Nphases} \frac{f_{j}}{V_{j}^{2}} \sum_{k=1}^{Npeaks} L_{k} |F_{k,j}|^{2} S_{j} (2\theta_{i} - 2\theta_{k,j}) P_{k,j} A_{j} + bkg_{i}$$

• The structure factor:

$$\left|F_{k,j}\right|^{2} = m_{k} \left|\sum_{n=1}^{N} f_{n} e^{-B_{n} \frac{\sin^{2} \theta}{\lambda^{2}}} \left(e^{2\pi i (hx_{n} + ky_{n} + lz_{n})}\right)\right|^{2}$$

Atomic scattering factor and Debye-Waller

• The atomic scattering factor for X-ray decreases with the diffraction angle and is proportional to the number of electrons. For neutron is not correlated to the atomic number.

Neutron scattering factors

- For light atoms neutron scattering has some advantages
- For atoms very close in the periodic table, neutron scattering may help distinguish them.

X-ray and neutron diffraction

Thermal or Debye-Waller factor

e-2M

- It causes a decrease of the intensities at high angle
- It is proportional to the thermal vibrations
- Intensities decrease increasing the temperature
- From the Debye-Waller it is possible to estimate the Debye temperature

Parafocusing circle (Bragg-Brentano)

Residual stress measurement

Residual stress analysis

campione M04/045/2 zona A-1 residual stress -1082 MPa +/-60 MPa

When either or both $\operatorname{orf}_{3} \varepsilon_{23}$ are non-zero, d measured at positive an negative Psi will be different due to the argument Psiin associated with these terms causing split in the d (2-theta)s. sin Psi data. This effect is termed Psi-splitting.

Diffraction analyses

- Phase identifications (crystalline and amorphous)
- Crystal structure determination
- Crystal structure refinements (cell parameters and atomic positions)
- Quantitative phase analysis (and crystallinity determination)
- Microstructural analyses (crystallite sizes microstrain distributions etc.)
- Texture analysis
- Residual stress analysis
- Order-disorder transitions and compositional analyses
- Thin films

Search-Match and the PDF system

34-0412 Quality: I	(Fe0.6	Cr0.4)2	03									0 00 000
CAS Number:	Iron Chr	romium ()	xide					N			000 0 ··· ··· /// // 00	-
Molecular Weight: 156.61 /olume[CD]: 297.39 Dx: 5.247 Dm:	A Rer: Ke	ller, L. et	<u>al., N</u>	orth L		ite Unive	rsity, Far	go, North D	akota, Ut	5A, I	CDD Grant-In-Aid, (198	<u> </u>
iys: Rhombohedral .attice: Rhomb-centered .G.: R Cell Parameters: 1 5.017 b c 13.643 β y SS/FOM: F27=57(.0125, 38)	Fixed Slit Intensity)	1 5	3		5	60	-1-1 75	20 86 90 2 6	٠		
I/Icor: Rad: CuKa Lambda: 1.54178 Filter: d-sp:	28 24.284 33.408 35.802 39.650 41.122 43.751 49.763 53.950 54.449 56.435	Int-f 45 100 65 3 25 35 25 50 1	h k 0 1 1 0 1 1 2 0 2 0 1 1 2 1 2 1	< 1 1 2 1 0 1 3 2 4 1 6 1 3 2 4 1 6 1 1	28 57.741 58.108 62.796 64.199 64.303 70.144 72.610 72.909 75.739 75.817	Int-f 2 25 25 25 21 11 3 6	h k 1 2 2 2 1 4 2 2 7 3 0 0 2 0 8 1 010 1 1 9 2 1 7 2 2 0	1 28 2 78.255 3 79.222 4 81.032 7 81.297 0 83.677 3 85.413 0 85.413 9 88.749 7 90.074	Int-f 3 1 3 5 6 2 7	h 32310013	k 2 3 1 2 2 8 210 012 3 4 1 5	

