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Why Neutrons ?

l Relative Scattering Powers of the Elements

l Neutrons scatter strongly from light elements
(Because neutron scattering is a nuclear interaction)
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Why Neutrons ?

l Neutrons are unique for Magnetic Structures

l H.M. Rietveld 

Structure of Magnetic 
Materials

MnTa4S8 - the famous
example given in the original 
Rietveld manual 
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Why Powders ?

l …Well, if you don’t have a single crystal…

l For many new, interesting materials, 
single crystals are not available

l Zeolites, Superconductors, GMR materials...

l And many other materials are not really
single crystals

l At least not at 0 K, the most important temperature
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Why Powders ?

l Destructive Phase T/Ns
l Classical Perovskite transitions

Small displacements of light atoms
l Subtle changes in the powder ‘profile’ 

- interest of “Profile Refinement”

l And no single crystals

l Examples:
l KNbO3

l NaNbO3
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Why Rietveld Refinement ?

l Strongly overlapping reflections
l Previously, integrated intensities were obtained for 

groups of overlapping reflections.

l Key to success of RR
l inclusion of all the information
l refinement of physically meaningful parameters

(reduction of correlation between parameters)
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Why not X-ray Powder Diffraction ?

l Magnetic structures… not possible with x-ray powders
l X-rays best (synchrotrons) for SOLVING structures

Easier to find the heavy atoms first

All atoms are ‘equal’ for neutrons

l Neutrons are best for REFINING structures
Few systematic errors (average over big samples etc…)

Easier sample environment (low temperatures etc…)

l Interest of very precise structure measurements
Precise bond lengths

Study charge ordering, metal-insulator transitions…
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Popularity of Neutron Powder Diffraction

Number of ILL Publications 1995-1999 per Instrument

6 instruments produce half the ILL's publications (and half the ILL's Phys.Rev.Let.)
Notes: Only publications listed by ILL library. Possible naming errors for NFP instruments.
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Neutron Powder Diffraction

l Hydrogen storage in metals
l Location of H among heavy atoms
l No single crystals

l Laves phases eg LnMg2H7 (La,Ce)
l Binary alloys with large/small atoms
l Various stackings of tetrahedral 

sites –can be occupied by H-atoms
l Up to 7 Hydrogens per unit

l Can even find H in Eu on D20 !

Real Materials, not crystals - Hydrogen in Metals

Gingl, Yvon et al. (1997) J. Alloys Compounds 253, 313.
Kohlmann, Gingl, Hansen, Yvon (1999) Angew. Chemie 38, 2029. etc..
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l Hydrogen storage in metals
l Location of H among heavy atoms
l No single crystals

l Laves phases eg LnMg2H7 (La,Ce)
l Binary alloys with large/small atoms
l Various stackings of tetrahedral 

sites –can be occupied by H-atoms
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Neutron Powder Diffraction
Real Materials, not crystals - Hydrogen in Metals
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High Pressure Powder Diffraction

l Mixture of 5- and 7-membered 
rings of Ice XII.

l Delicate balance between 
competing ice phases - tests 
water potential functions in 
chemical & biological systems

l Model metastable structures

New phases of Ice discovered by neutron diffraction

Lobban, Finney, Kuhs (1998) Nature 391, 268.
Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.
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High Pressure Powder Diffraction

l Ice-XII - densest form of ice 
without interpenetration

l Ice-IV - auto-clathrate
interpenetration of H-bonds 
for even higher density

l Ice-He clathrate like Ice-II

New phases of Ice discovered by neutron diffraction

Lobban, Finney, Kuhs (1998) Nature 391, 268.
Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.
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Applications of large fast detectors
Real-time Phase Diagrams

Sue Kilcoyne, Bob Cywinski et al.
Crystallisation of amorphous alloys Y67Fe33 with increasing temperature

Complete diffraction pattern in minutes or seconds, scan through temperature
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Applications of large fast detectors
Pseudo-binary  RMn2 compounds: Dy1-xYx Mn2

Clemens Ritter, R. Cywinski et al  on D1B

x=0x=0

x=0.3x=0.3 x=0.7x=0.7

x=0.9x=0.9
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Applications of large fast detectors

l Latroche, Chabre et al. 
In-situ Charging and discharging of metal hydride electrodes LaNi5 

Real-time electro-chemistry

Inner Ni anodeInner Ni anode

Hydride cathodeHydride cathodeElectrolyteElectrolyte

CdCd--shieldingshielding

Neutron beamNeutron beam

outer Ni anodeouter Ni anode

Quartz reactorQuartz reactor DischargingDischarging

ChargingCharging

ChargingCharging

DischargingDischarging

Time/minTime/min
2Theta2Theta

Counts/O.1°/minCounts/O.1°/min

l Follow chemical changes with battery charge/dischage cycle
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Neutron Powder Diffraction
and Novel Materials

l Structure of the 90K 
high Tc superconductor

l Left -by X-rays
(Bell labs & others)

l Right -by Neutrons
(many neutron labs)

l The neutron picture 
gave a very different 
idea of the structure -
important in the search 
for similar materials.

YBa2Cu3O7 drawing from Capponi et al. Europhys Lett 3 1301 (1987)

Why Use Neutron Powder Diffraction ?
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Valence Sum Calculations
What is the valence of Cu in Cu4O3 ?

O'Keeffe, M. Bovin, J. Am. Miner 63 180 (1978)

• Average Cu valence = 2*3/4 = 1.5

• 2 types of Cu
• Cu+ at (0,0,0) with 2 oxygens
• Cu++ at (0,0,1/2) with 4 oxygens

• Valence Sum V=Σi[exp(Ro-Ri)/B] 

• Ri = Cu-Oi bond lengths
• Ro= 1.610 for Cu+ to O2-

• B  = 0.370

• Calculate Ri bond lengths & hence V
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l Cava, R. J. et al. (1990). Physica C. 165: 419 (Bell labs/CNRS/ILL)
l Jorgensen, .D. et al. (1990) Phys. Rev. B41, 1863 (Argonne)

Valence Sums & “Charge Transfer”

Most cited neutron papers - “charge reservoir” concept in oxide superconductors

l Superc. YBa2Cu3O7 l Non-superc.YBa2Cu3O6 l Charge Reservoir
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l Relation between bond lengths, 
charge transfer and 
superconducting Tc

l The “Charge Reservoir” concept 
encouraged many chemists to 
successfully search for similar 
materials with different charge 
reservoir layers

Valence Sums & “Charge Transfer”
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Electronic Order-Disorder

l Oxide superconductors, CMR, Vewey transition…
l Precise structural measurements vs temperature

l Example: charge ordering in Ti4O7 (Le Page et al.)
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Neutron Powder Diffraction
Charge Transfer in YNiO3
Marie-Theresa Fernandez-Diaz et al.

Combined ESRF, D1B and D2B data - Alonso J.A. et al (1999) PRL 82, 3873
Metallic Ortho. YNiO3 -> Insulating Mono. YNiO3 T < 582K     Ni valence 3-δδ, 3+ δδ

V(Ni1) = 2.62  V(Ni2) = 3.17

Ni1 Ni2

M(Ni1) = -1.4 µµB M(Ni2) = 0.7 µµB
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Ni1 Ni2
l Double evidence for charge transfer

l Magnetic superstructure and different 
moments on Ni-sites

l Different Ni-O distances around Ni1 and 
Ni2 sites mean ‘charge transfer’ 

l Neutrons provide both. But need:
l High resolution to resolve symmetry
l High flux to see superstructure

Combined ESRF, D1B and D2B data - Alonso J.A. et al (1999) PRL 82, 3873
Metallic Ortho. YNiO3 -> Insulating Mono. YNiO3 T < 582K     Ni valence 3-δδ, 3+ δδ

V(Ni1) = 2.62    V(Ni2) = 3.17

Neutron Powder Diffraction
Charge Transfer in YNiO3
Marie-Theresa Fernandez-Diaz et al.
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Giant Magneto-Resistive Ceramics
La 0.333Ca 0.667MnO3

l Very large changes in electrical 
resistivity with temperature

l cf oxide superconductors

l mixed valence charge-ordering 
Mn3+/Mn4+

l GMR effect near room 
temperature 

l applications to magnetic storage 
of data (new high density IBM 
hard disks)
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GMR Stripes and Charge Ordering

l Remarkable electron 
microscope images of 1D 
stripe pattern in GMR 
La0.33Ca30.67MnO3

l Evidence also for 1D 
ordering in high-Tc 
superconductors (Cu3+

stripes, spin-ladders etc)

1D-ordering ? Dimensionality important for theory.

Mori et al. Nature (1998) 392,473
Other papers in Phys. Rev. Letters
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l Expect instead Mn3+/Mn4+ to 
be uniformly distributed (2D 
Wigner crystal model of 
Goodenough)

l The 1D-stripe model would 
have very important 
consequences for the theory 
of superconductors and GMR 
oxides

GMR Stripes and Charge Ordering
1D-ordering ? Dimensionality important for theory.
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GMR Stripes and Charge Ordering

l High resolution synchrotron 
powder data (Brookhaven) 
reveals true symmetry & ss

l High resolution neutron 
powder data (ILL Grenoble) 
allows refinement of real 
structure
a) Average Structure
b) Stripe Structure
c) Wigner Crystal Structure (best fit)

l The stripe structure is not 
supported

Neutron + Synchrotron Powder Diffraction

Radaelli et al. (1999) Phys. Rev B
X-ray work on X7A (BNL) 
Neutron work on D2B (ILL)
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Neutron Powder Diffraction

l What has been achieved ? Exciting new science ?
l High impact even outside the crystallographic community
l Magnetism, Superconductors, Giant Magneto-Resistance

l Why Neutrons ? Why not X-rays ?
l Neutrons+X-rays complementary 
l Solution of structures with X-rays 
l Refinement of important details with neutrons – valence sums

l Why Powders ? Why not crystals ?
l Crystals should be used when available
l Much new work started with powders - high Tc, GMR...


