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n0n-H independent protein atoms were determined, including 
202 C, 55 N, 64 O and 6 S atoms. The globic scattering factors 
are used to calculate phases tph(glob) by means of (2). The 
phase error between the atomic and globic computed structure 
factors is 

A~O = ( ~  Wnl~Oh(atom ) -- tph(glob)l ) /(~--~ Wh), (5) 

where w h = IFn01 and tPh(atom) is the phase computed from the 
refined atomic coordinates. The average phase errors were 
calculated for resolution shells of 50 reflections, shown in Fig. 
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Fig. 2. Globic phase-error distribution of crambin. • . . . .  Phasing by 
both main polypepfde-chain globs and side-chain globs. - . . . .  
Phasing by only polypeptide-chain globs. The peak in the latter curve 
at ~ 5.6 A correlates well with the average closest separation distance 
between the side-chain globs of adjacent amino acid residues which 
were not included in the structure-factor calculation of the 
polypeptide-chain model. 

2. The error distribution clearly shows that the phase errors 
decrease rapidly when d's are longer than about 3.0 ,~. A 
marked reduction of the globic phase error is achieved when the 
side-chain positions, in addition to the polypeptide backbone, 
have been modeled. Further reduction in phase error by 
modeling the ordered solvent structure is modest in comparison, 
i.e. less than 10 °. Calculations performed for triclinic lysozyme, 
haemoglobin and erabutoxin reveal a similar pattern over the 
resolution range indicated in Fig. 2 (data not shown). 

In summary, globs may be advantageously used in low- 
resolution electron-density maps in which an atomic model 
cannot be confidently fitted. 
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Abstract 

Twin laws are groups that express the symmetry relationships 
between two simultaneously observed domain states (domain 
pair) and are used to determine physical properties that can 
distinguish between the observed domains. A tabulation is 
presented of all possible non-magnetic twin laws, that is, 
all possible symmetry groups and twinning groups of the 
domain pair. Additional information is provided related to 
determining twin laws. This includes the coset and double-coset 
decomposition of point groups, the indexing and point-group 
symmetry of domain states, permutations of domain states, and 
a classification of domain states. 
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1. Introduction 

Crystalline domains can arise in phase transitions from a high- 
symmetry phase of symmetry G to a low-symmetry phase 
of symmetry F. The bulk structures of these domains in 
polydomain samples are referred to as domain states. Two 
domain states have the same crystal structure and differ only 
in their spatial orientation. Because of this difference in spatial 
orientation, when simultaneously observing two domain states, 
the two domain states can exhibit different physical properties 
(see e.g. Litvin & Litvin, 1990). In this paper, domain states 
will refer to single-domain states (Janovec, Richterova & 
Litvin, 1993), as we do not take into account any rotations of 
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neighboring domains required for the neighboring domains to 
meet along a coherent domain wall. In the determination of the 
physical properties that can distinguish between simultaneously 
observed pairs of domain states (domain pair), the concept 
of twin laws has been introduced (Janovec, Richterova & 
Litvin, 1992). These laws are groups that express symmetry 
relationships from which one can determine the distinguishing 
physical properties of the domain pair, and depend on the 
symmetry of one domain state and the spatial relationship 
between the domain states. It has been shown that two types 
of twin law can be associated with a domain pair, the so-called 
symmetry group and the twinning group of the domain pair 
(Janovec & Fuksa, 1995; Janovec, Litvin & Fuksa, 1995). The 
symmetry group of a domain pair may allow one to express 
the order parameters and irreducible constituents of physical- 
property tensors in such a manner that their components in the 
two domains are either the same or differ only in sign. The 
twinning group determines which secondary order parameters 
are the same and which are different in the two domains of 
a domain pair. As only macroscopic physical properties are 
considered, the continuum description of the domain states is 
used and the analysis is based on point-group symmetry. 

In this communication, we tabulate all possible non- 
magnetic twin laws. That is, for each point group G and 
each subgroup F of G, we tabulate all possible domain-pair 
symmetry and twinning groups. In §2, we briefly review the 
concepts leading to and including twin laws. In §3, we detail 
the information contained in the tables of twin laws. 

2. Twin laws 

The number n of domain states that arise in a transition from 
a higher symmetry group G to a lower-symmetry group F is 
n = IGI/IFI, where IAI denotes the order of group A. There is 
a one-to-one correspondence between the n domain states S(i), 
i = 1,2 ..... n and the cosets g~F, i = 1,2 ..... n, of the coset 
decomposition of G with respect to F: 

G = g iF  + g2F + g3F + . . .  + gnF. (1) 

S(i) = g,S(1), where gi is the ith coset representative of the 
coset decomposition. The domain state S(1) is invariant under 
F1 = F and S(i) under Fi = giFgi -1. 

A domain pair is denoted by { S(i), S(j) }. The n 2 domain pair 
can be partitioned into classes: two domain pairs {S(i),S(j)} 
and IS(i'), S(j ' )} are defined to be in the same class of domain 
pairs if there exists an element g of G such that IS(i'), S(j ')} 
= {gS(i ') ,gS(j ')} .  The number m of classes of domain pairs 
is equal to the number of double cosets in the double-coset 
decomposition of G with respect to F (Janovec, 1972): 

G = F g ~ F  + F g ~ F  + . . . +  Fg~F.  (2) 

A single representative domain pair from each class of domain 
pairs can be chosen as {S(1), gdcS(1)}, i = 1, 2 . . . . .  m, where 
g~ is the ith double-coset representative of the double-coset 
decomposition. 

The symmetry group Jij of the domain pair {S(i), S(j)} is 
defined by 

J0 = FO + g~Fo, (3) 

where Fi./ = F~ N Fj consists of all elements of G that 
simultaneously leave domain states S(i) and S(j) invariant and 

* , 

gigS(i) = S(j) and goS(j) = S(i). gij interexchanges the two 
domain states S(i) and S(j). If no such element g~ exists, then 

Table 1. Coset and double-coset decomposition of G = 6 m m  
with respect to F = rex: each row contains the elements of a 
single coset, sets of  cosets constituting a single double coset are 

separated by a rule 

! mx 

6z ml 

m3 65~ 

3:  mxy 

my 32 

2z m2 

Table 2. Index i and point-group symmetry Fi of the domain states 
S(i) in the caseof G = 6ram and F = mx 

Index  Si = giSt Fi = g i F t g i -  I 

1 S i  = lSx Ft = m x  

2 $2 =6zS l  F2 = m  R 

3 $3 = m3Sl F3 = my 

4 $4 = 3zS1 Fa = my 

5 $5 = mrSi F5 = m~, 

6 $6 = 2zS~ F6 = m x  

Table 3. Permutations of the domain states S(i) under the action 
of  elements g of  G in the case of G = 6mm and F = mx 

E l e m e n t  E l e m e n t  
o f  G Permuta t ion  o f  G Permuta t ion  

1 123456 mx 123456 
123456 132546 

6z 123456 m l 123456 
241635 214365 

3z 123456 mxy 123456 
462513 426153 

2z 123456 m2 123456 
654321 645231 

3z 2 123456 my 123456 
536142 563412 

6z 5 123456 rn3 123456 
315264 351624 

J0 = Fij. Only in the former case, where the domain pair is 
referred to as transposable, can this group be used to express 
the irreducible constituents of physical-property tensors in such 
a manner that their components in the two domains are either 
the same or differ only in sign (Janovec, Richterova & Litvin, 
1992, 1993; Janovec, Litvin & Richterova, 1994). 

The twinning group Kii of a domain pair {S(i), S(j)} is 
defined by 

K U -- (Fi, gij), (4) 

where Fi is the point group of S(i) and goS(i) = S(j). go 
transforms the domain state S(i) into the domain state S(j). 
The twinning group K U is the group generated by the elements 
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i IS(l), s(1)} 

2 IS(l), s(2)} 

3 IS(l), s(4)} 

4 IS(l), s(6)} 

Table 4. Classes of  domain pair in the case of  G = 6mm and F = ms 

{S(2), S(2)} IS(3), S(3)1 IS(4), S(4)} IS(5). S(5)} IS(6), S(6)} 

IS(2), S(4)} IS(4), S(6)} IS(6), S(5)1 IS(5). S(3)1 IS(3), S(I)] 
IS(l), S(3)} 1S(2), S(I)] 1S(4), S(2)1 1S(6), S(4)} IS(5), S(6)} 
1S(3). S(5)1 

IS(2), S(6)} IS(4), S(5)1 {S(6), S(3)} IS(5), S(I)} {S(3), S(2)} 
IS(l), S(5)} IS(2), S(3)} 1S(4), S(I)} 1S(6), S(2)} IS(5), S(4)} 
{SOL S(6)1 

{S(2), S(5)1 IS(4), S(3)} 1S(6), S(1)} IS(5), S(2)} IS(3), S(4)1 

of  F, and the e lement  gij, i.e. the smallest  subgroup of  G which 
contains both F~ and the e lement  g~j. 

3. Twin law tabulat ions  

The computer -genera ted  informat ion available in the twin law 
tabulations consists of  the fol lowing:* 

(1) Coset  and double-coset  decompos i t ion  of  the point group 
G with respect  to a subgroup F of  G (Janovec,  Dvorakova,  
Wike & Litvin, 1989). For example ,  in Table 1 we list the coset  
and double-coset  decompos i t ion  of G = 6 r a m  with respect  to 
the subgroup F = rex. Each row in the table lists the e lements  of  
each of  the IGI / iF  I = 12/2  = 6 cosets. The  coset  representat ives 
g,, i = 1, 2 . . . . .  6, see (1), can be taken as the first e lement  
in each row. Sets of  cosets separated by rules consti tute the 
double  cosets of  the double-coset  decompos i t ion  of  G with 
respect to F. In Table 1, we have four double  cosets and the 
double-coset  representatives g~C, i --- 1, 2, 3, 4, can be taken as 
the first e lement  of  the first coset  in each of  the double  cosets. 

(2) Indexing and point -group symmet ry  of  the domain  states. 
The  domain  state S(i) is defined by S(i) = giS(1), where gi is the 
ith coset  representative and S(1) is the domain-s ta te  invariant 
under  F. The point group Fi of  the domain  S(i) is defined by 
Fi = giFgi - t .  For G = 6 ram and F = rag, the indexing and 
point -group symmet ry  of  the domain  states are given in Table 2. 

(3) Permutat ions  of  the domain  states. We determine the 
permutat ions  of  the domain  states under  the action of  each 
e lement  g of  the group G, i.e. for each e lement  g of  G and 
each domain  S(i), we tabulate S(j) = gS(i). For G = 6 m m  and 
F = rex, we give these permutat ions  in Table 3. Next to each 
e lement  g of  G we give the permutat ion 

S(1) S(2) . . .  S(n) 

gS(1) gS(2) . . .  gS(n), 

where,  for typographical  simplicity,  only the indices of  the 
domain  states S(i) and S(j) = gS(i) are explicitly listed. 

(4) Classes of  domain  pairs. The  number  of  classes of  
domain  pairs is equal to the number  of  double  cosets in 
the double-coset  decompos i t ion  of  G with respect to F. A 
representat ive domain  pair f rom each class can be chosen as 
the domain  pair {S(1), gdicS(1) }. For G -- 6 m m  and F = mx, 

* A computer program for IBM-compatible computers entitled Non- 
Magnetic Twin Laws has been deposited with the IUCr [Reference: 
CR0499 (1 disk)]. Copies are available through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CHI 
2HU, England. For a given point group G and subgroup F, this program 
calculates the coset decomposition of G with respect to F, the indices 
and point group of the domain states, the permutations of the domains, 
classes of domain pairs, and the symmetry and twinning groups of 
representative domain pair, domain pair {S(1),gS(1)} and arbitrary 
domain pair IS(i), S(j)}. 

Table 5. The symmetry group Ju  and twinning group K U of  the 
representative domain pair {S(1), S(j)} in the case G = 6ram 

and F -- mx 

Representative domain JIj FIj gt~ 
pair { S(1), S(j) ] KIj Fl glj 

{S(I), S(2)} ml 1 ml 
6mm mx 6z 

{ S(I ), S(4) } mxy I may 
3zmz m~ 3z 

{S(I), S(6) } m~m22z mx 2z 
mxm22z mx 2z 

the four classes of  domain  pairs are listed in Table 4. The  first 
domain  pair of  each class is the representative domain  pair 
{S(1),g~cS(1)}. 

(5) Twin laws. For every point  group G, subgroup F and 
representative domain  pair {S(1), g/deS(I)}, except  for i = 1, we 
tabulate the domain  pair 's  symmet ry  group, (3), and twinning 
group,  (4). The case i = 1 is not considered as the corresponding 
domain  pair {S(I), S(1) } consists of  identical domain  states. 
We consider  only one domain  pair f rom each class because the 
relative spatial orientation is the same for the two domain  states 
in each domain  pair of  a single class (Litvin & Wike, 1989). 
For G = 6 m m  and F = mx, the twin laws are given in Table 5. 

(6) Addit ional  options provide the user with comple te  
flexibility in choosing which domain  pair to consider  in 
de termining domain-pair  twin laws. The  symmetry  group and 
twinning group of  domain  pair {S(1),gS(1)}, where g is an 
arbitrary e lement  of  G, and of  domain  pair {S(i), S(J)}, for 
arbitrary domain  states S(i) and S(j), can also be calculated. 

This work was supported by the National Science 
Foundat ion under  grant DMR-9305825.  
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