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Abstract 

The form of physical-property tensors of rank 0, 1 and 2 
invariant under the 32 crystallographic point groups and 
their subgroups are tabulated. This constitutes the basis for 
the tensorial classification of domain pairs in ferroic crystals 
which is given via a group theoretical classification of the 
corresponding physical-property tensor pairs. We tabulate 
this classification of tensor pairs for all physical-property 
tensors of rank 0, 1 and 2, and domain point-group sym- 
metry. 

1. Introduction 

A ferroic crystal contains two or more equally stable 
domains of the same structure but of different spatial 
orientation. These domains can coexist in a crystal and may 

* Mailing address: 1701 Bern Road, Apartment B2, Wyomissing, 
PA 19610, USA. 

0108-7673/90/080711-03503.00 

be distinguished by the values of components of certain 
macroscopic tensorial physical properties of the domains 
(Aizu, 1973; Newnham, 1974; Newnham & Cross, 1974; 
Wadhawan, 1982). Aizu (1970; see also Cracknell, 1972) 
has given a tensorial classification of ferroic crystals based 
on a rank 1 physical-property tensor's ability to distinguish 
some or all of the domains. This method of classification 
of ferroic crystals was extended by Litvin (1984) to an 
arbitrary physical-property tensor and used to determine 
the tensorial classification of non-magnetic crystals for all 
physical-property tensors of rank less than or equal to four 
(Litvin, 1985). 

In the study of the mutual relationships between domains, 
the simplest object one can consider is a pair of domains. 
A classification of domain pairs via a tensorial classification 
of corresponding tensor pairs of a full physical-property 
tensor characterizing the domains, where each domain is 
characterized by a unique form of the physical-property 
tensor, was introduced by Janovec (1972). This 
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Table  1. The Jahn symbol ( Jahn, 1949), rank and name 
is given for all physical-property tensors of rank O, 1 

and 2 

Jahn symbol Rank Name 
e 0 Pseudoscalar 
V 1 Polar vector 
eV 1 Axial vector 
V 2 2 Rank two polar tensor 
[ V 2] 2 Symmetric rank two polar tensor 
{ V 2} 2 Antisymmetric rank two polar tensor 
eV 2 2 Rank two axial tensor 
e[ V 2] 2 Symmetric rank two axial tensor 
e{ V 2} 2 Antisymmetric rank two axial tensor 

classification scheme was extended by Litvin & Wike (1989) 
from the case of full physical-property tensors to the general 
case of partial physical-property tensors, where more than 
a single domain is characterized by the same specific form 
of the physical-property tensor. 

In this paper we apply the tensor classification of tensor 
pairs to the cases of all physical-property tensors of rank 
0, 1 and 2, and domain point-group symmetry. We briefly 
review the physical-property tensors under consideration 
in § 2, and give, in § 3, the tensor pair classification. 

2. Physical-property tensors 

A vast amount of literature exists on the derivation and 
tabulation of the form of physical-property tensors invariant 
under the crystallographic point groups (Nye, 1957; Birss, 
1964; Wooster, 1973; Fumi & Ripamonti, 1980; Sands, 1982; 
and references contained in these sources). A wide variety 
of tensors and their physical interpretation are given by 
Sirotin & Shaskolskaya (1975) and the form of invariant 
tensors up to eighth rank has been given by Smith (1970). 

The tensors considered in this paper are all tensors of 
rank 0, 1 and 2. These tensors are listed in Table 1, where 
we give in the first column the Jahn (1949) symbol, the 
rank in the second column, and the name of the type of 
tensor in the third column. We have tabulated the form of 
these tensors invariant under each of the 32 crystallographic 
point groups, and under all subgroups of the 32 crystallo- 
graphic point groups.* 

This tabulation gives the form of the tensors invariant 
under all point groups and subgroups of the point groups 
directly without the need for any additional computations. 
For example, consider the form of the physical-property 
tensor V 2 invariant under point groups of type 3. In par- 
ticular, consider the two point groups belonging to this 
type: the point group 3xyz, a subgroup of the cubic point 
group m3rn, and the point group 3z, a subgroup of the 
hexagonal point group 6/mmm. The form of the physical 

* A computer program on disk for IBM compatible computers 
titled Physical Property Tensors and Tensor Pairs in Crystals is 
available as SUP 53021 (3 diskettes) through The Technical Editor, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. This program tabulates the form of physical- 
property tensors of rank 0, 1 and 2 invariant under the 32 crystallo- 
graphic point groups and their subgroups, and calculates the tensor 
pair classes for all these physical property tensors and domain 
point-group symmetry. 

property tensor V 2 invariant under 3xyz and 3z are, respec- 
tively, 

( i  B i ) ( !  A - C  i )  A and A , 

C 0 

where the former is given in the cubic coordinate system 
of the point group m3m, and the latter is given in the 
hexagonal coordinate system of the point group 6/mmm. 
This is in contrast to the standard methodology of listing 
the form of the physical property tensor V 2 for the point 
group 3z only in a Cartesian coordinate system and then 
requiring the reader himself to transform the coordinate 
system to obtain the form of the tensor invariant under 3z 
in a hexagonal coordinate system or invariant under 3xyz. 

3. Tensor pairs 

Let G denote the point group of the high-symmetry phase 
of the crystal and H the point group of one of the domains. 
We denote by H ~), i = 1, 2 , . . . ,  q, the point groups of each 
of the domains, with H (~) = H. Let T denote a spontaneous 
physical-property tensor which arises in the low-symmetry 
phase of the crystal. We denote by T ~), i = 1, 2 , . . . ,  q, the 
specific forms of the tensor T characterizing each of the q 
domains, and denote T(~)= T. 

In studying the mutual relationships between domain 
pairs one can study (Janovec, 1972) the mutual relationships 
between the pairs of tensors which characterize the pairs 
of domains. All pairs of tensors having the same mutual 
relationship can be considered as a single class of tensor 
pairs, and are called a class of crystallographically 
equivalent tensor pairs (Litvin & Wike, 1989). A single 
tensor pair, called a representative tensor pair, is chosen 
from each class to represent the mutual relationship 
between all tensor pairs in that class. A listing of all rep- 
resentative tensor pairs will then contain all possible mutual 
relationships. These concepts are explained briefly in the 
following. 

All ordered tensor pairs can be partitioned into classes 
of crystailographically equivalent tensor pairs: Two tensor 
pairs (T (~), T u)) and (T (r), T u')) are said to be crystal- 
lographically equivalent with respect to G and to belong 
to the same class of ordered tensor pairs, if there is an 
element g of G such that 

(T (i), T(J)) = (gT (r), gTU')), 

that is, if T u) = gT (c) and T (j) = gT 0'). 
Let G r denote the stabilizer of T in G. This subgroup 

GT of G is the set of all elements g of G which leave T 
invariant, i.e. gT = T. If GT = H then T is a full physical- 
property tensor and there are qr = q distinct forms of the 
tensor T, i.e. each of the q domains is characterized by a 
distinct form of the tensor T. If H is a subgroup of GT 
then T is a partial physical-property tensor and there are 
qr < q distinct forms of the tensor T. We denote the qr -< q 
distinct forms of the tensor T by T~d a) , a = 1, 2 . . . .  , qT and 
choose T(a~) = T (~) = T. 

All ordered distinct tensor pairs ( T(f ), T(a b)) can be parti- 
tioned into classes of crystallographically equivalent 
ordered distinct tensor pairs in the same manner as tensor 
pairs ( T (~), T(J)). The number of classes of ordered distinct 
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Table  2. The tensor pair classification o f  a polar vector 
physical-property tensor is given for  the case o f  G = 

m 3 m  and  H =4x  

Tensor T = V. 
Point group G = m3m. 

Subgroup H =4x. 
Number of domains = 12. 

Number of distinct domains = 6. 
Number of tensor pair classes = 3. 

Stabilizer GT- of T in G = 4xmymy z. 

Double coset 
representative 

1 

3~yz 

Tensor pair 

Table  3. The tensor pair classification o f  a rank 2 polar 
physical-property tensor is given for  the case o f  G = 

4 / m m m  and H = mx 

Tensor T = V 2. 
Point group G = 4/mmm. 

Subgroup H = mx. 
Number of domains = 8. 

Number of distinct domains = 4. 
Number of tensor pair classes = 3. 

Stabilizer Gr of T in G=2x/m. 

Double coset 
representative 

1 

2y 

2~y 

Tensor pair 

(: :)(0 !) A 0 0 B 0 
B A 

E 0 

tensor pairs is the same as the number of classes of tensor 
pairs. This number is determined by the following theorem 
(Litvin & Wike, 1989). 

Let G be the point group of the high-symmetry phase, 
H the point group of a domain, and T the specific form 
of the physical-property tensor T invariant under H. The 
number N of crystallographically equivalent ordered dis- 
tinct tensor pair classes is equal to the number of double 
cosets in the double coset decomposition of G with respect 
to Gr : 

G = GreGr  + Grg(2 ac) Gr + . . .  + Grg~ c) Gr, 

where Gr  is the stabilizer of T in G and g(k de), k =  
1 , 2 , . . . ,  N, are the double coset representatives. The 
double coset representatives can be found in the work of 
Janovec, Dvorakova, Wike & Litvin (1989). A representative 
ordered distinct tensor pair of each class of crystallographi- 
cally equivalent ordered distinct tensor pairs is given by 
(T, g~dC)T), k = 1, 2 , . . . ,  N. 

We have tabulated the representative tensor pairs 
( T, g(k ac) T) for all classes of tensor pairs, for all point groups 
G and subgroups H and all physical-property tensors T of 
rank 0, 1 and 2.* Examples of this tabulation are given in 
Tables 2 and 3. In each table we list the physical tensor T, 
the point group G, subgroup H, stabilizer Gr, the number 
of domains, the number of distinct domains and the number 
N of tensor pair classes. In each case we then list the coset 
representatives g(k de) , k = 1, 2 , . . . ,  N, and the representative 
tensor pairs ( T, g~k 'to) T). In the example considered in Table 
2, the mutual relationships of domain pairs whose domains 
are characterized by a polar vector physical-property tensor 

* See deposition footnote. 

are readily seen. All domain pairs have corresponding polar 
vectors which are parallel, anti-parallel or perpendicular. 
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