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A b s t r a c t  

A computer program has been written for the derivation of 
(3 + l)-dimensional symmetry operations from the two-line 
symbols. The derivation is based on the concept of generators 
{[F(R~), c", s", z v, q ) l v =  1, NG}, in which {[F(R~), 
s")lv = 1, NG} denotes the set of  generators of  the basic space 
group represented by the upper line. The program, called 
SPGR4D, is written in Fortran77 and based on the program by 
Burzlaff & Hountas (1982) [J Appl. Cryst. (1982), 15, 
464-467] for the derivation of symmetry operations in three- 
dimensional space. SPGR4D has been incorporated into a new 
version of the direct-methods program DIMS for solving 
incommensurate modulated crystal structures. 

1. I n t r o d u c t i o n  

The multidimensional representation of an incommensurate 
structure is characterized by the existence of at least four 
independent translation vectors, three of which describe a 
conventional three-dimensional lattice, while the additional 
ones describe the periodicity of  modulation and are incom- 
mensurate with the first three. Because of  the incommensurate 
property, there is no three-dimensional space-group symmetry. 
It has been shown, however, that a modulated structure can be 
depicted as a section through a (3 + d)-dimensional periodic 
structure having a superspace group in (3 + d)-dimensional 
space (de Wolff, 1974, 1977; Janner & Janssen, 1977). For the 
simplest case, in which there is only one additional dimension, 
the inequivalent (3 + 1)-dimensional superspace groups were 
found and tabulated for 24 classes of  Bravais lattices (de Wolff, 
Janssen & Janner, 1981). The list was further checked and a few 
corrections were made by Yamamoto, Janssen, Janner & de 
Wolff (1985), giving in total 775 inequivalent ( 3 +  1)- 
dimensional superspace groups. The full classification has also 
been given for incommensurate crystals with additional 
dimensions d of  less than four. The introduction of multi- 
dimensional description together with superspace symmetry 
transformations is important in the structure determination of  
incommensurate crystals (Yamamoto, 1982). At present, the 
superspace-group formalism has been widely accepted and used 
in both classification and structure determination (Janssen, 
Janner, Looijenga-Vos & de Wolff (1992). A number of  
multidimensional least-squares programs, REMOS, JANA and 
MSR [see, respectively, Yamamoto (1991), Petricek, Mal~, & 
Cisarovfi (1991) and Paciorek (1991) and references therein], 
have been written to solve and/or refine incommensurate 
modulated structures. A direct-methods program DIMS (Fu & 
Fan, 1994) has been constructed to solve the phase problem of  
one-dimensional incommensurate structures, which is based on 
a multidimensional modified Sayre equation (Hao, Liu & Fan, 

1987). Up to now, however, most structure-analysis program 
systems for incommensurate crystals have required the input of  
multidimensional symmetry operations. This is very incon- 
venient and can easily cause errors. To avoid this disadvantage, 
it is desirable to have a computer program that automatically 
provides the synunetry operations. In this paper, an approach is 
proposed for the derivation of symmetry operations from the 
(3 + l)-dimensional superspace-group symbols (the two-line 
symbols). Based on this, a computer program SPGR4D has 
been written, which can easily be incorporated into other 
program packages. In fact, it has already been incorporated into 
the new version of the program DIMS. 

2. T h e o r e t i c a l  b a c k g r o u n d  

According to de Wolff (1974), a one-dimensional incommen- 
surate crystal structure is represented by the periodic structure 
defined in the direct sum space V s = V,: ~ V 1 with basis (a, b, c, 
e4), where e 4 is the unit vector perpendicular to the three- 
dimensional physical space V~, while (a, b, c) forms the basis of  
the basic lattice. A vector in V s can be expressed as 

X = xa + yb + zc + te 4. (1) 

Positional defined quantities now depend not only on 
r - - x a  + y b  + z c  but also on t; for example, the electron 
density p(r) now corresponds to p'(r, t) with p'(r, t = 0 ) =  
p(r). The superspace symmetry operation G(ge, gI) has the 
form (de Wolff, Janssen & Janner, 1981): 

ger  --+ r' = RFr + s (2) 

gt t --~ f = e t  + 6 - -  q . s = e t  + z - qi " s (3) 

with 

z = 6 - q r . s  and q = q r + q i "  (4) 

Here, (R e, s) is a space-group operation in conventional three- 
dimensional space, with R E standing for the rotation and s for 
the translation, e = + 1 and 6 is a parameter that is an integer for 
all translations, q is the modulation wave vector, z is the 
intrinsic rational increment in t, which is the most convenient 
parameter for characterizing g~ in superspace-group symbols as 
well as for characterizing extinction. The combinations (R e , e ) 
are restricted by the following relations (de Wolff, 1977): 

eqi - Req i = 0 (5) 

and 

eqr - Req r = n*, (6) 

where q; and q~ are mutually perpendicular components of  q. 
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The coordinates of  q, are simple rational fractions with respect 
to the basis of  the basic lattice, whereas those ofq i  are irrational 
ones. n* is a reciprocal vector of  the basic lattice. Equation (4) 
poses a restriction on q also. 

For one-dimensional incommensurate modulated structures, 
there exist 775 inequivalent groups (de Wolff, Janssen & 
Janner, 1981; Yamamoto, Janssen, Janner & de Wolff, 1985). 
Each of  these is uniquely denoted by a two-line symbol, such as 
4 A""-~ The upper line contains the Hermann-Mauguin symbol 

I s l "  
for the basic space group. Below each generator ge of  the 
symbol, there is the corresponding gt indicated by the intrinsic 
parameters in the following way. If e -- - 1 ,  there is always an 
origin such that • vanishes. Thus, gt is indicated by i. For c = 1, 
r is invariant under a change of origin, and its value is one of 
the following: 

r= 0 ½ +½ -t-¼ , ~  (7) 
Symbol 1 s t q h 

The prefix is selected to denote the qr vector [see equation (4.4) 
of  de Wolff, Janssen & Janner (1981 )]. 

The lattice of  a periodic structure in direct sum space V s 
spanned by (de Wolff, 1974) 

a 1 -- a -- qXe 4 

a 2 = b - qYe 4 
(8) 

a 3 ---- c -- qZe 4 

a 4 -~ e 4 

is lett invariant by the group of orthogonal transformations 
(which may be called a superspace point group) associated with 
the superspace group. (a, b, c, e4) and (a l, a 2, a 3, a4) are two 
sets of  basis vectors in V s. They are related by an invertable 
4 × 4 matrix T: 

where 

(a I , a 2, a3, a4) --- (a, b, c, e4)T, 

T ---- 

T -1 

1 

1 
° ° °  1 
1 0 0 

0 1 0 ' 

- q ~ - q ~  1 
0 0 0 

1 0 0 

0 ! 0 

q V q ~ l  

(9) 

(lO) 

Thus, the superspace symmetry transformations with respect to 
the basis (al, a2, a3, a4) can be deduced from (2) and (3), which 
have the form (Janner, Janssen & de Wolff, 1983) 

G(RIv)X = F(R)X + v, (11) 

F ( R ) =  FM(R ) 

with 

and 

where 

FM(R ) = aF(RE) - eo 

= [arl'(RE) -- gO'r] ÷ [aiF(RE) - eai] (14) 

and ['(Re) is the 3 x 3 matrix of  R E. With the restriction 

triF(RE) - ctr i = 0, (15) 

FM(R) can be written as 

FM(R ) = arl"(RE) - -  Co" r .  ( 1 6 )  

Here, a is defined by 

a = (q~, q~, qZ) 

= ( C , ~ ,  g )  + (~,  ~ ,  ~ )  

= a, + tr i. (17) 

3. T h e  a p p r o a c h  

Superspace groups are denoted by a two-line symbol, which 
consists of  three parts. The prefix represents the component qr 
of  the modulation wave vector q, the upper line is the 
Hermann-Mauguin symbol of  the basic space group and the 
bottom line indicates the component gl of  the superspace group 
symmetry operation G(g E, gl). In this section, an approach is 
described for the derivation of (3 + 1)-dimensional superspace 
symmetry operations from the two-line symbol based on the 
concept of  generators. As mentioned above, a superspace-group 
symmetry element consists of  R E, e, s, ~ and q, from which the 
operation can be set up following (2) and (3) or following (11). 
A detailed investigation of the (3 + 1)-dimensional superspace 
groups led to the conclusion that symmetry operations of  each 
of these groups can be completed from a set of generators 
{[F(R~), e v, s v, ~v, q)lv = 1, NG}. Here {[F(R~), sV)lv = 1, NG} 
forms the set of  generators for the basic space group 
represented by the upper line. The procedure to obtain the 
generating sets is given below. 

3.1. Derivation o f  generators f o r  the basic space group 

The Hermann-Mauguin space-group symbols can be re- 
garded as symbols for a set of  generators of  the group 
(Mauguin, 1931). The notation components can be divided into 
two categories: (i) components that represent the type of 
generating operations (generators) that comprise the generating 
set mentioned above; (ii) components that serve as indicators 
for the mutual orientation of the related symmetry elements 
(Hermann, 1931). A detailed investigation of the conventional 
space groups has been given by Burzlaff & Zimmermann 
(1980). On the basis of their investigation, a computer program 
for the derivation of symmetry operations from the space- 
group symbols was constructed (Burzlaff & Hountas, 1982), 
which can be used to provide the set of  generators 
{[F(R~),sV)I v = 1, NG} for the basic space group. Here 
F(R~) is a 3 x 3 rotation matrix, s" is the corresponding 
translational part, while NG stands for the number of  generators 
in the set. This generating set is the starting point for the 
derivation of superspace groups. 
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Table 1. Examples showing the input format for  space groups 

Space group 

p~2/_h (¢ unique) 
s l 

pA2/_. (b unique) 
s I 

BeC2"lii (¢ unique) 

CPb_.2_ (b unique) : B 
111 

/~ii b, (a unique) :A 

Input format 

P[B 2/B]S -i 

P[A 2/A]S -i :B 

B[P C 2 A]I -i -i 

C[P B A 2]-1 1 -i 

A[P 2 C B]-I -i 1 

3.2. Determination o f  e v in the generating set 

Equation (5) or equation (15) imposes a strong restriction on 
e. It can be shown that, for a given Bravais class, t: in the 
combination (R e, e) is uniquely determined by R e. For Bravais 
classes with t% = (0, 0, 7), we have tLF(RF,) = F33(RE)a i, thus 
t; = /"33(RE). For Bravais classes with a i = (~t, fl, 0), triF(RE) = 
Pll(Re)a i : F22(RE)Gi,  leading to c : Ell  (Re) : / " 2 2 ( R E )  . If 
a i : (c(, fl, y), we have aLF(RF. ) : P33(RE)ai, which occurs 
only in Bravais class PPI, thus e. : N i l ( R e ) :  P22(Re ) :  
F33(RF~). For different settings in the cases of  monoclinic and 
orthorhombic classes, the relations between ~. and F(RE) in the 
combination (R e, e) can be easily deduced as above. A table o fe  
values in the combination (RF., e) for the 24 Bravais classes can 
be found in Appendix A. 

(iii) When dealing with a generating set having two elements 
and both the corresponding values of  ~ equal to - 1 ,  we must 
use caution. This only occurs when the superspace group 
corresponds to the point group 22 i i Or [~]2 i i- In this 
case, the two 2 i operations are selected as generators, while the 
operation in the square brackets serves as the indicator. If  the z 
associated with the indicator is not equal to 0, then z I and z 2 in 
the generating set cannot be assigned to 0 simultaneously, or the 
set will not make this group. An appropriate way to overcome 
this difficulty is to assign the z value of  the indicator to one of  
the generators. A list o f  z" values assigned for use in the 
program SPGR4D is given in Appendix B. 

3.4. About q or a 

Following the prefix notation (de Wolff, Janssen & Janner, 
1981), the rational part qr or o r o f q  can be easily obtained by 
interpretation of  the prefix in the two-line symbol. The 
irrational fraction q, or a~ is not used when the superspace- 
group operations are constructed on the basis (a 1 , a z, a3, a 4 ) .  If, 
on the other hand, the operations are to be set up on the basis 
(a, b, ¢, e4), then q~ must be given. 

Following the above scheme, the generators {[F(R~), e~, s", 
z", q)lv = 1, NG} can be set up for each of(3  + l)-dimensional  
superspace groups. 

3.3. Setting up z" values 

The value of  r defined in (4) is called the intrinsic rational 
increment in t. It has the following properties (de Wolff, Janssen 
& Janner, 1981): if e, = 1, z is invariant under a change of  origin 
and always has one of  the values in (7); if e, = - 1 ,  there is 
always an origin such that z = 0. On the basis o f  these 
properties, the values of  r" in {[F(R~), e", s", z", q)lv = 1, NG} 
can be assigned by interpretation of  the bottom line as follows: 

(i) If  ~" = 1, z" is assigned according to (7). 
(ii) I fe  ~' = - 1  and all e# = 1 (# -¢ v), then z v can be assigned 

to 0, which is associated with the origin being fixed in the 
fourth dimension. In some cases, however, other values may be 
preferred. For example, the superspace group PPZ/T has two 
generators [P(2~), 1, 0, z(2~, 1), (0, 0, 7)] and [F(m~), - 1 ,  0, 
½, (0, 0, 7)]. Here, f iR e, c) indicates that z is associated with the 
combination (R e, e). If z(2_~, 1 ) is assigned to 0, then z( l ,  1 ) -- ½, 
whereas z(2~, 1) = ½ leads to z( l ,  l) = 0. The latter assignment 
is preferred. 

SYMMETRY CTASS : MONOCL:NIC 
SUPERSPACE GROUP: P [B 2/B ] I - 1 

SYMMETRICAL OPERATION: *(O 0 0 0 1/2 C ]/2 C) 

1 c c c .oo -I o o o .oo ] c c o .oo -1 o o o .co 
0 1 o 0 (;0 0 - I  0 0 . 50  0 ] 0 0 . 50  0 -1  0 0 cc  
C 0 1 0 .CO 0 C : C .CO 0 0 -I C .90 C 0 -1 0 .00 
0 0 0 1 .OC O 0 C ] .OC 0 0 O - i  .CO C 0 O - 1  . 00  

SYMMETRY CIASS : ORTHORHOMB/C 
StJPERSPACE GROUP: C [ P  M. A A] -i 1 1 :A 
SYMMETRiCAl. OPERATION : 

1 0 O 0 .OC - ' -  0 C 0 .OC i 0 O 0 . 5 0  1 0 "~ O . 50  
0 1 0 C . 00  0 ] 0 0 . 00  - 1  C 0 .CO 0 ]. C 0 .O0 
o (] _ c . oo  o o 1 o . oo  o ~ _" o . co  o o - 1  o . oo  
o o c .oo ~ o ~-i .oo o c o ~ .oo o o-, .oo 

-=~ oi o o .50 -i o o o .so i o o .......... o .oo 
o o .oo o 1 c c .co o - I  o c .oo o - i  o o .oo 

o o ] o . oo  o ~ -" o . co  o o - 1  c . oo  o c - 1  o . oo  
o o 1 -: .oo o o o-1 .oc o o-i 1 .co o o c-1 .oo 

Fig. 1. Part of the text file OUTPUT.DAT. 

4. Example  

Consider the superspace group W P42/n-nm The basic space group 
q los" - . 

is P42/nnm. The generating set o t  the basic space group 
consists o f  nnm, which stand respectively for a glide plane 
perpendicular to the reference direction [001], a glide plane 
perpendicular to [100] and a mirror plane perpendicular to 
[110]. The screw axis 42 associated with the reference direction 
[001] serves as an indicator. Choice of  the origin at the inverse 
centre gives the three generating operations: 

n[O01] 

1 1 0 0 
0 1 0 ! 

2 '  

0 0 i 0 

and 

n[101] 
i 0 0 0 

1 0 1 0 
l 0 0 1 

I 0 1 0 
1 m[l i0 ]  1 0 0 ~, 

0 0 1 0 

where the 3 x 3 matrix is the rotation part while the 3 × 1 
matrix stands for the translation vector s. Values of  e," combined 
with the above three operations are - l ,  l and l , respectively. 
The corresponding z v are assigned respectively to 0, ~ and 
according to the bottom line. The prefix W indicates 
qr = (~, ½, 0). By (4), the three values of  6 are calculated to 
be ½, ~ and 0. Then, FM(R) for each combination (R~, c v) is 
calculated from (16). Thus, the three generating operations of  
this superspace group are set up as follows: 
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Table  2. e values in the combination (R E, e)for 24 Bravais classes 

Column I lists the numbers of  the Bravais class. Column 2 lists the symbols of  the Bravais class together with the components 
(~, fl, ?) = ( ~ ,  ~ ,  ~ )  o f  the vector ~ .  Different settings for the monoclinic and orthorhombic classes are listed with (a), (b) and (c) denoting, 
respectively, the a, b and c unique settings. Fuu stands for the/~th row and/lth column of  the rotation matrix F(RE). 

Bravais class e value 

No. (c) (a) (b) (e) (a) (6) 

1 P ? I  (~flT) r ~  

2 [P~/7 (~fl0) P/~i/7 (0fl'/) PP~/7 (~0~) r l l  1"22 r33 

3 ct~/7(OlflO ) At~/7(Ofl~ ) BP~/7(~07) I ' ll  F22 1-'33 

P i t (Off'/) Fll F22 F33 

5  '7(oo, C'7( oo) C7(o o) r.  
6 A~/7(007) B~1/7(~00 ) C~z/7(OflO) F33 F,l F22 

7 P~l/7(007) Pc~/'~(~00) PA~/7(0fl0) F33 F,, F22 

8 B~I '7  (00"/) CC~'7 ( ~00 ) ~A~/T(OflO) 1-'33 I ' l l  ['22 

Pmmm Pmmm mmm 9 P I l i  (007) P i l l  (oc00) PPI i l (0fl0) I'33 1"11 1-'22 

l 0 Pmmm ~ Pmmm Pmmm ,4 l i ! (0fl0) l"ll F22 B 1 I i (OOy) C i l 1 (0~00) F33 

Pmmm ., Pmmm Pmmm 1 1 W I l i  (00t)  U i 1 I (~00) V 1 i l (0fl0) F33 Fll  F22 

! 2 1,.m., 1., . . . ,  mmm P i 1i(007) Fil  F22 P i l I (a00) PI1 I1 (0fl0) 1-'33 

1 3  Cmmm , mmm Bmmm P I l i  (007) PAil  I (0~00) P I i l  (0fl0) 1-'33 l-'ll I-'22 

1 4  Cmmm ~ Ammm N I i l  (0fl0) I-'33 Fll  I-'22 L I I i (007) M i l l  (0~00) Bmmm 

15 / ~  I I i (00y) B . . . . . .  mmm P i l l  (0~00) PCI i l (0fl0) 1"33 FII I-'22 

Ammm 0 Bmmm Cmmm C 111 (0flO) I"ll ['22 16 A 1 l ] ( 0 ~ )  B ~ i 1 (a00) F33 

17 :777(o :) :777( 0o) :777(oao) r33 r,, r22 
18 Fmmm Fmmm Fmmm N l i l  (0fl0) F if L I 1 i (00~) M i 1 I (~00) 1"33 1"22 

4/mmm 
19 Pel i II (00"/) ["33 

P4/mmm 
20 W i i i l (00),) F33 

4/ma, nm 
21 /all i II (00~/) 1"33 

22 PR~7(0~) F33 

R3m 23 Ril I (00y) 1"33 
f6 /mmm,,~ x 

24 ~ i I I tuuy) F33 
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Point group 

1 

i 

2 

m 

2/m 

22(2) 

ram(2) 

m(2)m 

(2)ram 

mmm 

4 

4/m 

(4)22 

(4)ram 

(~,)m2 

(~,)2m 

T a b l e  3. r ~' values assigned Jbr use in the program SPGR-4D 

Bottom line in the two-line 
symbol 

! 

i 

i 
1 

s 

i 
1 

s 

i i 
i s 
I ] 
s i 

i i (I)  
i i (s) 

1 I (1 )  
s ! (s) 
s s (1) 
1 s (s)  
q q (1) 

1 ( i )  i 
s ( i)  i 

(]) 1 ] 
( i )  s i 
( i )  q i 

1 1 i 
s 1 i 
s s ] 
1 s ] 
q q i 

1 
s 

q 

i 
1 i 
s i 
q i 

(1) i i 
(s) i i 
(q) i i 

(1) 1 1 
(s) s 1 
(1) s s 
(s) 1 s 
(q) q 1 
(q) q s 
( i )  l i 
( i )  s i 
( i )  q i 

( i )  i l 
( i )  i s 

r" Point group 

0 (4)/mm 

0 

0 
0 
1 
2 

0 3 
0 
I 
2 

0 0 32 
! ! 
2 2 

0 0 3m 
1 1 
2 2 

0 0 3m 
I 0 

0 0 3(1)2 
l 0 2 
1 1 

~ 32(1) 0 1 
2 

1 ! 
4 4 

0 0 3m( 1 ) 

! 0 2 

0 0 3(I)m 
1 1 _ 

2 2 
! ! 3(1)m 
4 4 

0 0 0 
12 0 ½ 3m(l)  
1 1 0 
2 2 

1 1 0 ~ ~ 6 
! ! 0 4 4 

0 
! 
2 
1 

0 6/m 
0 0 
! 0 
12- 0 (6)22 
4 

0 0 
1 0 

0 i 
4 (6)mm 

0 0 
I 0 
2 
I I 
2 

1 
0 ~ (6)m2 
_1 0 
4 
i ! 
4 2 (6)2m 
0 0 
! 1 
2 
! 0 (6)/mmm 
4 

0 0 
1 1_ 
2 2 

Bottom line in the two-line 
symbol 

(1) i l 1 o o 
I (s) i s 1 0 
1 (1) i s s o 

(s) i 1 s o o 
I (q) i q 1 0 
1 (q) i q s 0 4 

1 0 
t ! 3 

i o 
1 i o o 

i 0 t i 3 

I ! 0 0 
! s 0 ! 2 

i 1 0 0 
i s 0 ~- 2 

l (1) ~ o o 
l 0 t (1) i 

! i ( I )  0 0 
I 0 t ] (1) 

1 1 (1 )  0 0 
1 1 s (1 )  0 2 

1 (1 )  i 0 0 
I I (1) s o 

i (1) 1 o o 
1 i (1) s' 0 

i 1 (1) 0 0 
1 i s (1) o 

1 0 
I s 
I t 
I h g 

i o 

i i o 
1 s i 

(1) i i o 
(s) i i o 
(t) i i o 
(h) i i o 
( I )  1 1 0 

I (s) s 1 
1 

(1) s s 
(s) 1 s 0 

( i)  1 i 0 
I ( i )  s i 

( i )  i l o 
( i )  i s o 

(1) [ 1 1 0 
(s) i s 1 0 
(1) i s s 0 
(s) i 1 s 0 

0 
0 

0 
I_ 
2 l 
3 
1 _ 

6 

0 
0 
l_ 
2 
.!1 
2 

0 
0 

0 
_1 
2 

0 0 
l 0 
l ! 
2 2 
0 i 

2 
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I 1 0 0 0 
1 0 1 0 0 

o o i o o' 
l 1 1 0 ] 

and 

T 0 0 0 0 
1 0 1 0 0 
1 0 0 1 0 
I i 0 0 1 

1 0 1 0 0 
1 0 0 0 ! 

2 

0 0 1 0 O' 
0 0 0 1 0 

from which all the other 13 symmetry operations can be 
derived. 

INPUT.DAT containing a list of  the 1997 (3 + l)-dimensional 
superspace-group symbols, the program produces a full list of  
symmetry generators for all these space groups in 2 min when 
running on an IBM 386/33-compatible personal computer. The 
results are written to a text file OUTPUT.DAT, part of  which is 
shown in Fig. 1. 

A P P E N D I X  A 

Table 2 shows the e values in the combination (RE, e) for 24 
Bravais classes. 

A P P E N D I X  B 

Table 3 shows the z" values assigned for use in the program 
SPGR4D. 

A P P E N D I X  C 
A simple program calling the subroutine SPGR4D 

5. The program 

The program SPGR4D is written in Fortran77 and designed as a 
subroutine that is easily called by other programs. SPGR4D 
derives generators associated with the basis (a 1, a2, a3, a4) 
according to a two-line superspace-group symbol input by the 
user. The program divides the superspace-group symbol into 
three parts: the prefix, the upper line and the bottom line. The 
program by Burzlaff & Hountas (1982) is incorporated into 
SPGR4D for the interpretation of the upper line. If the whole 
input symbol is one of the 230 conventional space groups, then 
SPGR4D (actually the program of  Burzlaff & Hountas, 1982) 
will work out the generators in three-dimensional space. 
SPGR4D produces a complete set of  symmetry operations. 
The rotational parts, F(R) in (11), are stored in the integer array 
ROT(48, 4, 4). Translational parts are in the integer array 
TSL(48, 4). Components of  v in (l l) are obtained from 
TSL(48, 4) modulo 24. Basic translations associated with the 
centring of the lattice are stored in the integer TCL(4, 4) in the 
same way as that in TSL(48, 4). All the results, transformation 
matrices and basic translations are written to an output text file. 
It is assumed that the input information consists of  the correct 
two-line symbols defined by de Wolff, Janssen & Janner (1981). 
No full control for internal consistency is performed. However, 
SPGR4D undertakes some checking on the bottom line. For 
example, wPb~nwill be checked as an incorrect symbol and the 

q q  . . . 

user will be asked for a correcnon. For monochnlc and 
orthorhombic superspace groups, the default setting is assumed 
as c unique. Nonstandard settings should be declared with a 
note (:A for a unique and :B for b unique) next to the symbol. 
The input format of  a two-line symbol is: 

prefix [3D space-group symbol] bottom-line note, 

in which the format of  '3D (three-dimensional) space-group 
symbol' is the same as that used by Burzlaff & Hountas (1982). 
Some examples are given in Table 1. A simple program for 
calling SPGR4D is listed in Appendix C. With the input file 

C MAIN 
INTEGER ERR,SYMBOL(80),ROT(48,4,4),TSL(48,4),TCL(4,4) 
OPEN(I,FILE='INPUT.DAT',STATUS='OLD') 
OPEN(2,FILE='OUTPUT.DAT',STATUS='UNKNOWN') 
DO I00 I=l,10000 
READ(I,'(80Al)',END=999) SYMBOL 
CALL SPGR4D(SYMBOL,ROT,TSL,TCL,NG,NLC,ERR,2,ICENT,I) 
IF(ERR.EQ.99) GOTO 999 

I00 CONTINUE 
999 STOP 

END 

The project is supported by the National Natural Science 
Foundation of  China, grant no. 19571076. 
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