
511 

Acta Cryst. (1994). AS0, 511-515 

Direct Methods for Incommensurate Intergrowth Compounds. II. Determination of the 
Modulation using only Main Reflections 

BY SHA BING-DONG AND FAN HAI-FU 

Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China 

SANDER VAN SMAALEN 

Laboratory of Chemical Physics, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, 
The Netherlands 

AND ERWIN J. W. LAM AND PAUL T. BEURSI~NS 

Laboratory for Crystallography, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, 
The Netherlands 

(Received 15 October 1993; accepted 25 January 1994) 

Abstract 

A modified Sayre equation for incommensurate 
intergrowth compounds is presented. With this equa- 
tion, both magnitude and phase for structure factors 
of satellite reflections can be estimated quantitatively 
through the observed intensities of main reflections, 
provided their phases are already known. Modula- 
tion functions can then be revealed by the Fourier 
synthesis calculated using the observed main reflec- 
tions and the estimated satellites. The method has 
been tested with the known structures of two 
inorganic misfit layer compounds, (LaS)~.~aNbS2 and 
(PbS)I.I8TiS2. Satisfactory results were obtained. 

Introduction 

Incommensurate intergrowth compounds can be 
considered as coherent combinations of two or more 
modulated structures (Janner & Janssen, 1980; van 
Smaalen, 1992). In a diffraction experiment, they 
give Bragg reflections at the nodes of the reciprocal 
lattices of the basic structures of the subsystems 
(main reflections). Additional, satellite, reflections 
are found owing to the incommensurate modula- 
tions. In paper I of this series (Fan, van Smaalen, 
Lam & Beurskens, 1993), the multidimensional direct 
method proposed by Hao, Liu & Fan (1987) has 
been extended for use in the determination of 
modulations in composite structures. Experimentally 
observed intensities of both main and satellite reflec- 
tions are needed in this procedure. However, since 
intensities of main reflections contain information on 
the modulation, it could be possible to determine the 
modulation in a composite structure by measuring 
only the intensities of main reflections. For this 
purpose, a new modified Sayre equation is derived, 
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with which the magnitudes and phases for structure 
factors of satellite reflections can be estimated quan- 
titatively, provided the magnitudes and phases of the 
main reflections are known. A least-squares method 
has been used to determine the modulation of com- 
posite structures using only the observed structure- 
factor magnitudes of main reflections (Kato, 1990). 
Our method differs from the least-squares method in 
that the structure factors of satellites can be esti- 
mated before the modulation model has been estab- 
lished. This means that with our method the 
modulation waves can be measured directly from the 
resultant Fourier map while no preliminary assump- 
tion about the modulation is needed. 

The method 

1. Modified Sayre equations for composite structures 

According to the structure-factor formula for a 
composite structure of incommensurate intergrowth 
compounds (Petricek, Maly, Coppens, Bu, Cisarova 
& Frost-Jensen, 1991; van Smaalen, 1992; 
Yamamoto, 1992), we can define the structure factor 
for a composite structure, .~(Hs), as 

.;r(Hs) = ZF~(HsI4P.-1)/V~, (1) 
v 

where V~ and F~(Hs) are, respectively, the unit-cell 
volume and the structure factor of the uth substruc- 
ture; H~=(hl,...,h3+d) is the (3+d)-dimensional 
scattering vector; and the matrices W ~ take care of 
the fact that the role of main-reflection indices and 
satellite indices is different for the different subsys- 
tems u (van Smaalen, 1992). As a single unit cell is 
not defined, the structure factor (1) is normalized to 
scattering per unit volume of material, e.g. per A 3. If 
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HI' = H, W ~'- 1, then F~(H;') can be expressed as (Ya- 
mamoto, 1982) 

1 1 

F~(I-ID= Z Zmt, , fdq. . . fdtaP"(t)f , , (HD 
(R~b'~) ~z o 0 

× exp{27ri[H~R~x°(tz) + H~M~3x°(#) 

+ H;" "a-]' + H ~" R~u~'(t) + H~" R,~t]}, (2) 

f.(H;') =f~(IH~l)exp[- lZl  ~. k~/3"(t)R~ • Hq.  (3) 

mt~, is the multiplicity factor of the independent 
atom ~ of subsystem v. f~  and /3 ~" are the three- 
dimensional atomic scattering factor and tempera- 
ture factor of the /zth atom, respectively. H is the 
projection of Hs onto physical space while H3 and Ha 
represent, respectively, the first three and the last d 
components of H~. The subsystem symmetry opera- 
tors (R;'I~;') are derived from superspace symmetry 
operators (R~Ix3 by application of W ~. They are 
composed of a 3 × 3 physical-space part (R~), a d× d 
part transforming the additional coordinates and the 
left lower d× 3 part , )~ .  The right upper 3 x d part 
contains only zeros. M indicates the transpose of the 
matrix M. The atomic positions are divided into a 
basic structure position x°(/z) and a modulation part 
U (Xvs,a,...,Xvs,3 +d), with arguments of the modulation 
functions x~,.3+:= cr,[L + x°0z)], where cr~ is the 
matrix of modulation wave vectors for subsystem v 
and L is a lattice vector of the basic structure. The 
occupational probability P(~vs.4,...,~vs.3+d) and the 
temperature tensor may also be modulated. Equa- 
tions (1)-(3) are easily generalized to include symme- 
try operators that map one subsystem onto another 
(van Smaalen, 1992). 

Similarly to three-dimensional space, we have in 
multidimensional space 

p,(Xs) = Z ~(I-Is) exp ( -  2rril-l, • x,) (4) 
H, 

• -~-sq(ns) = Z J ( H ' ) ~ ( H s - H ; ) ,  (5) 
H; 

where J~q(H,) is the structure factor of the squared 
multidimensional structure in which atoms are 
squared while their positional parameters are left 
unchanged. Corresponding to (1), (2) and (3), we 
have 

sq ~-sq(Hs) = Z F~,(H~W"'-~)/V,, (6) 

1 1 
s q  v F~ (Hs) = Z Zmt~,fdh...fdta[P~'(t)]2f~q(H;) 

(R~b'9 ~ 0 0 

x exp {27ri[H~R~x°(iz) + H~M~3x°(/z) 

+ H;' "x;" + H ~" R~u~'(t) + H~" R~t]} (7) 

f sqfl't~h = f~q'°(lH~[) exp [ -  ItF • k~/9"sq(t)R~ • H~], 

(8) 

where f~,o(l_i~l) and ~/z,sq denote the three-dimen- 
sional atomic scattering factor and temperature 
factor of the /zth squared nonequivalent atom in 
subsystem v, respectively. 

Suppose that the crystal is composed of equal 
/2. - -  • atoms and P (X~s.4,...,X~s,3+d)= 1 Also, assume that 

the temperature tensor is not modulated. Then, 
f~,(l-l;') = f(Hs) and fsqa4~ j~,,__,, =pq(H,)  and it follows 
from (1), (2) and (7) that 

J (Hs)  = f(H~)A(H~) (9) 

J -  sq(ns) =fsq(ns)A(Hs) (10) 
1 I 

A(I" Is )=ZV~I  Z Z m t j d q . . . f d t a  
v (R~lx~) ~ 0 0 

x exp {27ri[H~R~x°(l.t) + H~M~d3X°(p.) 

+ H ] ' . x ; ' + H " .  R~u~'(t)+H~ • R~(t)]}. (11) 

Hence, 

J-(Hs)/jsq(Hs) = f(Hs)/fsq(Hs) = O(Hs). (12) 

Combining (5) and (12), we obtain 

.:(H~) = O(Hs)Z , : (H ' ) , : (H~-H; ) .  (13) 
H; 

This is the multidimensional Sayre equation for com- 
posite structures. The right-hand side of (13) can be 
divided into three parts, then 

,7 (l--Is) = O(Hs)[Z J-main(nts).Tmain(Hs - H') 
[ H '  

+ 2 Z fmain(n;)-;Y-sat(I-Is- H ' )  
H; 

+ ~ ,fsat(I-l;).fsat(Hs- H;)/, (14) 
H; l 

where the subscript 'main' indicates main reflections 
and the subscript 'sat' indicates satellites. 

First, consider H, in (14) to be a satellite reflection. 
Since the intensity of satellites is much weaker than 
that of main reflections on average, the last two 
summations on the right-hand side of (14) are much 
smaller than the first. Neglecting those, we have the 
modifed Sayre equation relating satellite reflections 
to main reflections: 

J-sat(Hs) ~" 0sat(Hs)Z . fmain(n;),fmain(ns- H'). (15) 
H; 

On the other hand, if H~ corresponds to a main 
reflection, two of the three contributions to (14) are 
retained to give another modified Sayre equation: 

. fmain(as )  = 0main(ns)[H~. .;¢main(-Hsr)J-main(l-ls - n's) 

+ 2Y" .Ymain(Hs),Zsat(Hs- H's)]; (16) 
n;  a 

although the second term is small compared to the 
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first, it is retained to allow calculation of the 
influence of the satellite reflections on the main 
reflections. 

2. Determination of  the function 0(I-I~) 

Equation (15) implies that both the magnitude and 
phase of the structure factor for satellite reflections 
can be estimated from the whole set of structure 
factors of main reflections, of which magnitudes are 
measured from the experiment while phases can be 
calculated from the known basic structure. However, 
there remains the problem of determining the func- 
tion 0(H~). For an equal-atom structure, 0(H~) can 
be calculated from (12) using the form factor of the 
squared structure, which is easily calculated by the 
convolution 

f~q(lH[) = f fo(lH'l) fo(lH-H'l)dn' .  (17) 

For nonequal-atom structures, 0(I-I~) is approxi- 
mated by its weighted average: 

{XW o [)]21~. sqo [)]2} I/2 0(H~)= ,,[f~(lH wg[fg" ([H , (18) 
/z 

where the weights represent the amount of atom type 
/.L present in the structure [e.g. for (LaS)~.I4NbS2 the 
weights are w(La)= 1.14, w(Nb)= 1 and w(S)= 
3.14]. 

In practice, O(Hs) will not be given by (12). The 
functions that enter the Sayre equation [(13)-(16)] 
depend on the temperature factors, which are not 
known. Furthermore, series-termination effects 
heavily influence the values of the summations and 
the Z2 relationships involved are different for (15) 
and (16). Therefore, 0sat(Hs) in (15) is not equal to 
0main(ns) in (16) and they both need to be 
determined from experimental data. The combina- 
tion of (15) and (16) gives 

gmain(Hs)---~ 0main(ns)(~-'~ .Ymain(H's)~main(H s - H') 
LH~ 

+ 2~" . f m a i n ( n ' )  0 sa t (ns  - n ' )  
H', 

XEH',' " f m a i n ( H ' s ' ) g m a i n ( H s - H ' -  a " ) ] } "  

(19) 
Equation (19) can be used to estimate 0s~t(H~) and 

0main(I-gs) since it involves only structure factors of 
main reflections, which are assumed to be known in 
advance. 0sat(as) and 0main(as) are each in fact some 
kind of atomic form factor. They may be expressed 
as the sum of Gaussian functions. We write accord- 
ingly 

0main(as)'- ~.A main exp ( -  BmainlH]2 ) + C main, (20) 
i 

Osat(Hs)=~,Asatexp(-Bsat[Hl2)+csat, (21)  
i 

Table 1. Coefficients of  the function O,,,ain 
A~ai" A~i-  cm~i, 

Sample x 10 -6 x 10 -6 B~ nain B~ aain x 10 -6 
(LaS)I.14NbS2 2.956 8.871 0.2550 - 0.2518 - 2.176 
(PbS)HsTiS2 4.773 - 0.2279 0 .2426 4.9440 - 1.234 

Table 2. Coefficients of  the function Osat 

A~' A~' C =, 
Sample x 10- 6 x 10- 6 B~' B~ t × 10- 6 
(LaS)H4NbS2 98.98 107.7 0.2233 0.1357 106.2 
(PbS)~ ,sTiS2 60.13 3.033 0.3101 2.0549 0.3021 

where only terms with i = 1, 2 have been used. All 
the parameters A isat, u,Rs'at, C sat, A main, Bmain and C main 

can be obtained by a least-squares refinement based 
on (19). It should be noted that, if 0sat(Hs) and 
0main(ns)  a r e  determined by a fit to (19), using IFol, 
their absolute values represent the scale of the experi- 
mental data and thus have no physical meaning. 
Only the angle dependence and their relative values 
can have some meaning. 

Test and results 

The method was tested with experimental X-ray 
diffraction data of (LaS)l.14NbS2 and (PbS)~.18TiS2 
(van Smaalen, 1991; van Smaalen, Meetsma, Wiegers 
& de Boer, 1991). Both structures can be described as 
an alternating stacking of two types of layers 
(Wiegers & Meerschaut, 1992; van Smaalen, 1992). 
For (LaS)I.14NbS2, there are in total 860 unique 
reflections with 584 main reflections and 276 satel- 
lites; while for (PbS)I.18TiS2, 1652 unique reflections, 
including 1462 main reflections and 190 satellites, are 
available. 

First, coefficients for the expressions of 0main(Hs) 
and 0sat(Hs) were determined by a least-squares 
refinement based on (19) using the known phases 
and experimentally measured structure-factor magni- 
tudes of main reflections. Results are listed in Tables 
1 and 2. The reliability of these coefficients was 
checked by calculating the R factors 

R = Z[I J-ol- I~cl[//Y.l.7ol, (22) 

where I~ol is the structure-factor magnitude of 
main reflections derived from the experiment satisfy- 
ing the definition of (1), I~cl is that calculated from 
(19). We found that the final R factor for 584 main 
reflections of (LaS)l.14NbS2 is 0.233, while that for 
1462 main reflections of (PbS)~.~8TiS2 is 0.399. 

Phases and moduli of satellite reflections were then 
calculated by phases and moduli of main reflections 
and 0sa t (ns)  input into (15). For (LaS)~.~4NbS2, the 
average phase error with the phases from the 
refinement of the modulated structures is the same as 
obtained with the phase-extension procedure (Fan, 
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Table 3. ComparL~on of satellite structure factors 
obtained by direct methods [(15)] with measured 
amplitudes of the satellites and phases from the 

modulated structure refinement 

R is defined in (22). 

Number of Average phase 
Sample reflections error (°) R 

(LaS) H4NbSz 276 17.05 0.300 
(PbS)~.~sTiSz 190 8.84 0.197 

van Smaalen, Lam & Beurskens, 1993). For 
(PbS)1.18TiS2, the average phase error is slightly 
larger (Table 3). Comparing observed magnitudes 
with the calculated magnitudes of the satellites gives 
a higher R factor than the partial R factor in the 
refinement. It is to be determined whether the calcu- 
lated satellites can be used in a refinement procedure. 
Nevertheless, Fourier maps do show the usefulness 
of the calculated satellite structure factors. The 
Fourier synthesis at the position of lanthanum using 
main reflections only does not show the modulation 
(Fig. 1). The additional inclusion of the calculated 
satellite structure factors (15) gives a Fourier map 
that is indistinguishable from the Fourier map 
obtained with measured magnitudes and phases from 
the refinement (Figs. 2 and 3). 

ible in a Fourier synthesis of the reflections of an 
incommensurate intergrowth compound (Fan, van 
Smaalen, Lam & Beurskens, 1993). In this paper, it is 
shown that both the magnitudes and the phases of 
the satellite reflections can be derived from the struc- 
ture factors of the main reflections. For the latter, 
measured amplitudes are combined with phases 
obtained from, for example, a basic structure 

o.o 0.4 o.8 X2 
I I I . . . . . . .  I I 

0 . 0 -  

. 

0.4" 

0 . 8  

Xt" 

Concluding remarks 

It was shown previously that satellite reflections are 
an essential ingredient to make the modulations vis- 

Fig. 2. The same section of the four-dimensional Fourier synthesis 
as in Fig. 1. Experimental main reflections with phases from the 
basic structure refinement are combined with both magnitudes 
and phases of satellite reflections obtained with the direct- 
methods procedure [(15)]. 
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I I I I I I 

0.0- 

0 . 4  

0 . 8  

Xt- 

Fig. 1. Section of the four-dimensional Fourier synthesis of  
(LaS)1.~4NbS2 at the position of the La atom (x = 0 and z = 
0.174). Contours are plotted at intervals of  1/5 of the maximum 
density. Main reflections are used, with experimental magni- 
tudes and phases from the basic structure refinement. 
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0 . 8 -  
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Fig. 3. The same section of the four-dimensional Fourier synthesis 
as in Fig. 1. For both main reflections and satellites structure 
factors are used with experimental magnitudes and phases from 
the modulated structure refinement. 
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refinement or a direct-methods procedure indepen- 
dent of the satellite reflections. This, at first sight 
surprising, result can be understood from the special 
nature of intergrowth compounds. The two subsys- 
tems coexist in a single thermodynamic phase and 
part of the satellite intensity due to the modulation is 
already contained in the main reflections. This 
information allowed the refinement of modulation 
parameters on main reflections only (Kato, 1990), 
but it is insufficient to reveal the modulation ampli- 
tudes in a Fourier synthesis (Fig. 1). The method 
proposed here allows one to calculate the satellite 
structure factors from the main reflections with suf- 
ficient accuracy to determine the modulation from a 
Fourier map (Fig. 2). 

Phases of the satellite reflections can be obtained 
as described earlier (Fan, van Smaalen, Lam & 
Beurskens, 1993). For their magnitudes to be deter- 
mined, a crucial step is that the functions 0sat(ns) 
and 0main(Hs) can both be determined from the main 
reflections alone [(15), (16) and (19)]. Applications 
are given to the inorganic misfit layer compounds 
(LaS)~.~4NbS2 and (PbS)~.~8TiS2. The Fourier map 
calculated with the main ,reflections and the satellite 

reflections generated in the direct-methods procedure 
is found to be indistinguishable from the Fourier 
synthesis using experimental amplitudes for all 
reflections combined with phases from the refinement 
(Figs. 2 and 3). This shows the structure factors of 
the satellite reflections calculated with (15) to be 
sufficiently accurate to determine the modulations in 
these composite crystals. 

References 

FAN, H. F., VAN SMAALEN, S., LAM, E. J. W. & BEURSKENS, P. T. 
(1993). Acta Cryst. A49, 704-708. 

HAO, Q., LIU, Y. W. & FAN, H. F. (1987). ,4cta Cryst. A43, 
820-824. 

JANNER, A. & JANSSEN, T. (1980). Acta Cryst. A36, 408-415. 
KATO, K. (1990). Acta Cryst. B46, 39-44. 
PETRICEK, V., MALY, K., COPPENS, P., BU, X., CISAROVA, I. 8¢ 

FROST-JENSEN, A. (1991). Acta Cryst. A47, 210-216. 
SMAALEN, S. VAN (1991). J. Phys. Condens. Matter, 3, 1247-1263. 
SMAALEN, S. VAN (1992). Mater. Sci. Forum, 100&101, 173-222. 
SMAALEN, S. VAN, MEETSMA, A., W1EGERS, G. A. t~ DE BOER, J. L. 

(1991). Acta Cryst. B47, 314-325. 
WIEGERS, G. A. & MEERSCHAUT, A. (1992). Mater. Sci. Forum, 

100&101, 101-172. 
YAMAMOTO, A. (1982). Acta Cryst. A38, 87-92. 
YAMAMOTO, A. (1992). Acta Cryst. A48, 476-483. 

Acta Cryst. (1994). A50, 515-526 

Quasicrystals and their Approximants: Dodecahedral 
Local Ordering Versus Canonical-Cell Description 

BY V. E. DMITRmNKO 

A. V. Shubnikov Institute of Crystallography, 117333 Moscow, Russia 

(Received 7 June 1993; accepted 14 December 1993) 

Abstract 

Two models of icosahedral quasicrystals are compared 
and connected. These are canonical-cell ordering (CCO) 
over medium-length scales (about 10/k and more) and 
dodecahedral local ordering (DLO), which describes 
interatomic arrangements. In the DLO model, each atom 
is surrounded by closest neighbours positioned at several 
vertices of a regular pentagon-dodecahedron; of the 
20 vertices of any dodecahedron, only a few can be 
occupied simultaneously without conflict (eight at most). 
Some icosahedral quasicrystals and their crystalline ap- 
proximants exhibit DLO as the main structure motif 
at atomic scales. DLO networks are formally described 
using an unconventional projection of a six-dimensional 
lattice. It is shown that most DLO configurations (but not 
all of them!) can be constructed from small atomic size 

© 1994 International Union of Crystallography 
Printed in Great Britain - all fights reserved 

canonical cells that are a factor of "r 3 smaller than the 
original ones. Two of the small canonical cells have the 
forms of distorted tetrahedra. It is also shown that DLO 
produces naturally the two most popular decorations 
of the Ammann rhombohedra: the edge decoration and 
the vertex-face decoration. Moreover, both decorations 
can be identified inside the same approximant. For 
medium-range distances, DLO leads to CCO with spe- 
cial decorations of the canonical cells. Therefore, the 
ordering in quasicrystals and in their approximants can 
be constructed as a hierarchy of dodecahedral ordering 
(or a hierarchy of canonical cells). It is shown that 
within the DLO model there may be an additional 
ordering of closest neighbours that leads to the transition 
between quasicrystals with primitive and face-centred 
lattices. The DLO-based duality between o~-A1MnSi and 
A15Li3Cu approximants is demonstrated. Possible physi- 
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