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Abstract. A direct method was tested in solving the structure of a 3-di-
mensional quasicrystal in 6-dimensional space. Theoretical 3-dimensional
diffraction data were used which contain Gaussian distribution errors with
a mean error of about 20% for intensities. The diffraction data were firstly
converted to a set of 6-dimensional structure factors. The window fuhction
used for the conversion was measured from the Patterson origin peak in
pseudo space. A direct method was then applied to solve the phase problem
in 6-dimensional space. Test results showed that the procedure is very
efticient.

1. Introduction

The discovery of icosahedral phases in rapidly quenched Al—Mn alloy
(Shechtman et al., 1984) brought about a great deal of interest in the
structural characteristics of these phases. Since then, various structure
models {or quasicrystals have been put forth. Because of the nonperiodicity,
it 1s very difficull to determine the atomic positions in a quasicrystal in
physical space using conventional methods. Elser (1986) showed that the
three-dimensional (3D) Penrose tiling having the icosahedron symmetry
can be obtained by projecting a subset of six-dimensional (6D) lattice on a
special 3D hyperplane E,. This method has been widely accepted to describe
quasicrystal structures. 6D structure models have been set up for several
wcosahedral quasicrystals such as (Al,Zn).sMg,3 (Elser and Henley, 1985;
Henley and Elser, 1986), (AL Si)—Mn (Cahn, Gratias and Mozer, 1988)
and AlgCuLi; (Pan, Cheng and Li, 1990). All of them are simple periodic
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structures in 6D space. This provides the possibility that a quasicrystal
structure can be determined by solving firstly the corresponding structure
in 6D space and then converting the result into 3D space (de Boissieu,
Janot and Dubois et al., 1991; Cornier-Quiquandon, Quivy and Lefebvre
et al., 1991). L1, Wang and Fan (1987) and Xiang, Li and Fan (1990) have
proposed a procedure for this purpose by using the direct method. With
this procedure, the 3D diffraction data of a quasicrystal are first converted
into 6D space. Then a multi-dimensional direct method is used to derive
phases for the 6D reflections. Finally the 61D E-map is cut with a 3D
hyperplane to obtain the 3D guasicrystal structure. So far the method has
been only tested with a 1D Fibonacci sequence. Before the method can be
used in practice, further test with higher dimensional model is necessary.
Here we present the results on a thorough test with the 3D model of the
quasicrystal of Al,Culis,.

2. Method
2.1. Representing a quasicrystal in multi-dimensional space

According to the ‘cut method’ originally proposed by de Wolff (1974) for
the description of incommensurate modulated structures, a 31 quasicrystal
can be considered as a 6D periodic structure cut with a 3D hyperplane. A
simple formulation for this purpose was described by Li and Cheng (1990)
which 1s reviewed briefly in the following.

A 6D lattice function 1n real space 1s constructed by a series of delta
functions arranged at the positions of latlice points, we write

Lory,ry) = 3, 2.8(ry — R, —R)). (1)

Herer (x;.y.z )and r (x,,y,,z ) denote coordinate vectors, whilc R, and
R, denote lattice vectors in physical and pseudo space respectively. Axes
X\, Y. £, XL, yo and z, are generally not parallel to the basic vectors of
the 6D unit cell. Consider a special 6D lattice L{r,r ), which is obtained
by the convolution of L, with a window function:

1, inside a certain region in the pseudo space

Wiry) = {

0, elsewhere
We thus have
L("usll) = W{(r, ) * Lo(r,r.), (2)

where * denotes the convolution operation. The reciprocal of L is then
Q(hn:hﬂ = S(hj_)ﬂﬂ(hllshJ_)a (3)



Solving a 3-dimensional quasicrystal structurc in 6-dimensional space 59

where Sth,) and Qy(h,h,) are the Fourier transform of W{r,) and Ly(r,r )
respectively. It is obvious that L and Q are quite different in the shape and
size of their lattice nodes and in their boundary conditions. The lattice L 13
unlimited, its latticc nodes have definite size and shape in the pseudo space
but they are sharp (delta-function like) in the physical space. On the other
hand, the reciprocal lattice Q is limited and its lattice nodes are sharp In
both physical and pseudo spaces. Now a 3D quasilattice ¢(r;) can be
oblained by cutting a 6D latticc L with the 3D physical space. For example,
if L{r;,r ) is a 6D cubic lattice with the window function corresponding to
a triacontahedron, then by cutting L with the 3D physical space, we get a
quasilattice g(r;) equal to a standard 3D Penrose tiling. Since Fourier
transforming a section of a function is equivalent to projecting the Fourier
transform of that function along the direction perpendicular to the section,
~ the Fourier transform of ¢(r;) will be

oh)) = f Ofh b, )oh, = T TSEH)Sb, —H,). )

Hy H;

where H, and H, are the components of 6D reciprocal lattice vectors in
the physical and pseudo space respectively. The inverse Fourier transform
of Equation (4) gives the formula for quasilattice identical to the density
wave cxpression:

g(r)) =3, 2S(H e~ e, (5)

HI, H,

The relationship among L, Qo, L, £2, ¢ and @ is summarized as in Figure
i. Based on the above description, we can now set up the relationship
between a 3D quasicrystal structure and the corresponding 6D regular
periodic structure. A 6D regular periodic structure is constructed by the
convolution of the lattice Ly with the atomic arrangement in a unit cell,
o(f), which is represented by the electron density distribution in X-ray
diffraction or the potential distribution in electron diffraction. By replacing
Lo in Figure 1 with o(f)* L, and following the relationships given in Figure 1
we obtain a similar diagram Figure 2 showing the relationship between a
3D gquasicrystal and the corresponding 6D pertodic structure.

2.2. Structure analysis in multi-dimensional space

{ﬁm atom m a 6D regular periodic structure can be defined such that the
intersection of which with the physical space gives a real atom, while the
intersection with the pseudo space gives a delta function, i.e.

Qi(ry,r ) = @(ry)odr ). (6)
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T

L,(P, 1) o1 G,y hy)
convoluted multiplied
with W {r } by S{h,)

1

L (rils rJ_) o 12 {hu: h_]_}
cut with orojected
Ey along £,

b FT_1 h i
qlry) e Qh )

kig. 1. Schematic diagram showing the principle of deriving the quasiperiodic lattice
function in the cut description. Lo is a 6D periodic lattice. L 15 a special 6D periodic
latlice with ils nodes elongated in pseudo space. g 1s the quasiperiodic lattice cut from L.
;. Q and O are the Fournier iransform of Ly, L and g respectively. F7T stands for Fourier
transform. FT~' stands for inverse F7. E| stands for the physical space. £, stands for

the pseudo space.

~ FT -
g{r)xL,— F(H)
convolutet multiplied
withW(r ) by S (h )
- FT =
e{rixL ——| F (M)
cut with projected
Ey alongE,
FT’
e, iry) Folhy )

Fig. 2. Schematic diagram showing the relationship between a 3D quasicrystal structure
and the corresponding 61> periodic structure. Q,(r |} 1s a 3D quasicrystal structure. o(r)* 7.
is a special 6D periodic structure corresponding to g,4(r)) with its atoms spread in pscudo
space according to the window function W(r ). g(f)* L is a 61D regular periodic structure.
F(TT) is the structure factor of o(F)*Lo. Fq(Ifl) and £,(h )} are the structure factors ol the
quasicrystal represented in 6D and 3D space respectively.

The atomic scattering factor can thus be defined as the same of the corre-
sponding 3D rcal atom

Jithyshy) = 7ih ). (7)
Accordingly the structure factor of o(r)* L, is
N
F(H) = ) fi(H ™™, (8)

J=1
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while the structure factor of o(F)*L is

N
F,(H) = Y S(H,)f(H| )™, 9)
j=1
Here H is a latticc vector of the 6D reciprocal lattice €, F; is the 6D
coordinate vector of the /® 6D atom. Since £, is a regular 6D periodic

reciprocal lattice, H can be expressed in terms of the basis vectors of €.
We have

ﬂ == Z hibi? (10)

where b;’s arc the basis vectors of €, A;’s are the six components of H in

the directions of b;’s, they are also the six integer indices of the diffraction
" spot at the end of H. On the other hand, by a coordinate transform, H can
be split into two components H) and H,. Both H; and H, do not have
simple indices. Similarly a coordinate vector f in the regular 6D periodic
lattice L, can be wrilien as

6
E = Z X;4;, (1 1)
i=1

where a;’s arc the basis vectors of L, x;'s are the components of ¥ in the
dircctions of a;’s. T can also be split into the components in 3D physical
space and 3D pseudo space i.e. ry and r| respectively. By inverse Fourier
transform ol Equation (8), we have

N . 1 - oy |
Qolf) = QLo = T F(F)e~ 27 F, (12)

H
where J7 is the volume of the 6D unit cell of L,. Equations (8) and (12)
provide the basis of structure analysis of quasicrystals, since traditional
mcthods for crystal structure analysis can casily be extended from 3D space
to higher-dimensional spacc. As an example, direct methods have been
successfully extended to multi-dimensional space and used to solve incom-
mensurate modulated structures (Hao, Liu and Fan, 1987). In order to use
direct methods to solve quasicrystal structures, the main problem is to
obtain a sct of structure factor magnitudes | F{(H)| (sce Fig. 2). Qur starting
point is at the lower-right corner of Figure 2, i.e. a set of | F,(H}| which can
bc derived from the diffraction intensities of the quasicrystal. By indexing all
the observed reflections with six integer indices we obtain a set of | F,(H)|
in 6D spacc. Now before we can convert IFq(l:l)l to | F(H)| we need the
knowledge of the shape function S(H ) (see Equations (8) and (9)). This
can be achieved by inspecting the inverse Fourier transform of | F,(H)|?,
thc Patterson function of the quasicrystal (Xiang, L1 and Fan, 1990).
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According to Equations (8) and (9), if in the pseudo space all the atoms
have the same shape function S(H ) we can write

F(F) = S(H)F(A). (13)
Thus we have by the convolution theorem
PF) = Pfryr)) = FT'[|F, (M)

= P(r),r W )=Wir)l, (14)

where P(r,r,) is the inverse Fourier transform of | F(H)|, i.e. the Patterson
function of p,(F). Qur task is to find the boundary of W{r ). Consider a

region near r, = 0 on the sectionatr, = 0, P(0,r;) will be a delta function
centered onr, = 0. Hence within a region near the origin, we can write
P0,r,) = constant x W(r )*W(r,). (15

Wr )=W(r,) has a maximum at r, = 0. It gradually falls to zero, or 1n
practice falls to a base level, as |r,| increases to a value equal to the width
of W(r,) in the direction of r,. Hence we can detlermine the boundary of
W(r,) from the shapc of the Patterson origin peak. Once the boundary of
W(r,) and so the shape function S(H,) has been found, a set of |F(H)| can
then be obtained from |F, (H)|. By solving the phase problem for | F(H))|
with dircct methods, the structure po(F) is rcsulted. Finally the quasicrystal
structure g (r)) is obtained from go(F) by the cut method.

3. The model

The icosahedral quasicrystal T2 — Al,CuLi; can be obtained from a 6D
hypercubic crystal with lattice constant @ = 7.146 A, and 27 atoms inside
the 6D unit cell (Pan, Cheng and Li, 1990). The superspace group is P53m
(Janssen, 1986), with the 61D generators of the corresponding point group
given by

6o 1 o0 0 0 0
6o o0 1 0 0 0
|l o o o 1 0o o
M =1 o o o 0 1 0
1 o0 o 06 0 0
o o o 0o o0 1

/0 0 0 0 0 \
6 o0 0o 1 0 0
6 1 0 0 0 0

' =t o9 o -1t o 0o 0 (16)

{0 0 0o 0 0

\ o o o o 1 o /
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/-1 0 0 0 0 o
0 -1 0 o0 0 0
6o 0 -1 0 o0 0

'y =t o o o -1 0 0
o 0 0 0 -1 0

\ o o o o0 o0 -1

The three independent atomic sites and their 6D parameters are hsted in
Table 1. An overall temperature factor (B = 1.0 A®) was assumed. The
relationship between the 6D coordinates and the coordinates in 3D physical
and 3D pseudo space is given 1n the Appendix.

Table 1. The structure parameters of the 6D crystal model.

Atomic 6D coordinates QOccupation probability
site - -

X1 X2 X3 Xa X5 X6 Al Li Cu
Vertex 0 0 0 0 0 0 0.56 0.02 042
Edgc center 1,2 0 0 0 0 () 0.73 004 0.23
Body diagonal 172 122 0 0 0 1,72 044 0.56 0.00

In principle the shape of a multi-dimensional atoms should be a poly-
hedron in pseudo space, the symmetry of which is consistent with the
symmetry of the quasicrystal. For simplicity the polyhedron is replaced by
a sphere. In order Lo obtain a standard 3D Penrosc tiling the 6D lattice
nodes should be a unit triacontahedron. Hence the volume of the sphere
should be assigned equal to that of the unit triacontahedron. However, it
was found that for icosahedral quasicrystal T2 — Al;CulLi;, a smaller sphere
gives a better fit between the calculated and experimental electron diffrac-
tion pattern (Pan, Cheng and Li, 1990). In the present case a sphere with
radius R = 5.146 A was used accordingly. The window function is then

{1. r.| < R

Wir,) = .
(ry) 0, otherwise

(17)

4. Test and results

A set of theoretical 6D structure factors F(H) was calculated according to
the modcl given 1n the previous section. A spherical window function with
radius equal to 5.146 A was used to convert thesc structure factors to a set
of |F,(H )|. All the |F,(H, )|’s less than 1% of | F (000)] were rejected leaving
in total 114 independent reflections. Finally, Gaussian distribution random
errors were introduced into the |F,(H)|'s making the mean error equal to
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2) ry@ —

Fig. 3. Origin pcak of P 0,r,). (1) Densily contour of cross section (0,x,,y,.0). (2)
P (0]}

10%. Our test was started from such a sct of |[F,(H;)’s to solve the
quasicrystal structure.

The ‘dilfraction data’ | F,(H )| were first converted to | F,(H)| by indexing
them in 6D spacc. The Pattcrson function FT™'[|F,(H)?] was then calcu-
lated tfrom these 114 independent reflections and the width at half height
of its onigin peak (Fig. 3) was measured to determine the window function
(Xiang, Li and Fan, 1990). The radius of the projection window so obtained
is 0.78a, which is approximately equal to 5.57 A (0.42 A greater than the
true radius). This value was used to convert |F,(H)| into a sct of 6D
structure-factor magnitudes |F(H)|. £ values in 6D space were obtained
from |F(H)| in a way similar to that used in 3D space. Direct-method
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(3)

Fig. 4. Densily conlour of E-map of the 6D crystal structure model obtained by using
derived phascs of the best set. (1) Cross section (x,x,,0,0,0,0). (2) Cross section
{x1,x2,0,0,1/2). (3) Cross scction (x,,x2,0,0,0,1/12).

phasing by the random starting tangent rcfinement procedure (Yao, 1981)
was performed for the 114 independent reflections. 100 trial sets were
calculated. The top 9 scts with the highest combined figures of merit led to



66 Fu Zhcng-qing, Li Fang-hua and Fan Hai-fu

a 6D E-map showing all the atoms of the theoretical model with both
corrcct positions and appropriate heights (Fig. 4).

Since the radius of the window function has great influence on the
resulting values of |[F(H)|. An additional test was done using a radius with
even larger error. The value used is 5.72 A, which is 10% and 0.57 A larger
than the true valuc. In this casc the direct method still led to an E-map
showing the complete structure’.

5. Discussion

By converting the diffraction intcnsities of a quasicrystal to a set of struc-
ture-factor magnitudes of a 6D regular periodic structure, we can get rid
of the nonperiodicity of the quasicrystal and make use of the existent
methods to solve the structure. The determination of the window function
1s the most important step for the conversion. However the accuracy of the
parametes describing the window function is not as important as expected.
It was proved that dircct methods can tolerate great errors in the parameters
of the window function. Hence in the case thal the window function has a
shapc different greatly from that of a sphere and/or that the window
function i1s not the same for different atoms, it is still possible, as a first
approximation, to usc an overall window function with spherical shape.
More accurate window-function parameters can be obtained after the struc-
ture has been roughly solved.

Among the 114 independent reflections used in the test, over ninety
ones have intensity Iq('l:l) > (.001 - 1.« (/;max 18 the greatest intensity except
the 7,(0,0,0,0,0,0)). Although the used set of independent rcflections is
shghtly bigger than that can be obtained from experiment, it is reasonable
for testing a new procedurc. To decrease the starting reflections will lead
to a larger error in the determination of projection window. When the
measured radius of projection window is too rough for direct mcthod to
tolerate, a certain refinement as suggested by Xiang, Li and Fan (1990) can
be done.
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Appendix

Let E°® denote the 6D space in which the 6D hypercubic lattice is defined,
and

E‘6=E"€|—)El, (Ai)

where £, denote the 3D subspace complementary to the subspace E| of E°
and 1s named pscudo space.

When the Cartesian coordinate system 1s adopted to both £y and E,
with the threc orthogonal 2-fold symmetric axes of the icosahedron as the
basis coordinate vectors ay ,a,,8, and a,,,8) ,,a, ;, the orientation of E,
relative to the lattice is determined by

/ Ay / a3
iy 4z

S B O | (A2)
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where
T 0 1 —1 0 T
Tt 0 —1 —1 0 —<
i nNASTA ¢ 1 —z 0 T 1
T=1/V2t+4 1 . 0 —1 —1 0 (A3)
0 1 T 0 T —1
1 = 0 T —1 0

is a transformation matrix satisfying TT=TT=I (I is a 6 x 6 unit matrix,
~ denotes the transpositional operator), T = (1 +15)/2. Then

6
i: - Z xiai
i=1

— (xl !x21x31x4!x5!x6)

ax a,
= (x1.1,2)) ( a,y ) + (xp,¥1.21) ( a,, )

= l"" + r,. (A4)

Thus the 6D reciprocal lattice vectors

I:I = (h1,hg,h3,h4,h5,!?6) h3
b,

bs /
\ b,

afj,

/ af, \
— (hihahsha b h)T 21
Lx

\ &/
al.

— (kll xaﬁx'l'hl }-aﬁyﬁ_hilzaﬁz) + (hlxafx+hlyafy+hj_zafz)

=H, +H.. | (AS5)



