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Abstract 

Heavy-atom information has been incorporated into 
Hauptman's distributions of three-phase structure 
invariants for both isomorphous replacement and 
anomalous scattering cases. Reliable estimates of 
individual phases can be obtained by introducing the 
phase doublet expression ~0H = ~0h±IA~0H. A test 
calculation with error-free data of insulin showed 
results better than previous methods. 

Introduction 

In recent years, approaches based on the combination 
of direct methods with SIR (single isomorphous 
replacement) or OAS (one-wavelength anomalous 
scattering) have been well developed. Fan Hai-fu, 
Han Fu-son, Qian Jin-zi & Yao Jia-xing (1984) pro- 
posed that in the case of SIR or OAS the phase of a 
structure factor can be expressed as ~Pu = ~Ph + [A~pH[, 
where ~ph can be calculated from the heavy-atom sites 
and [A~pH[ can be derived from the experimental 
diffraction data. The phase problem is thus reduced 
to a matter of making a sign choice. Satisfactory 

* Part of this paper was presented at the International Sym- 
posium on Molecular Structure, Beijing, China, 15-19 September 
1986. 
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estimates of individual phases were obtained by com- 
bining this phase-difference relation with Cochran's 
(1955) probability distribution. Hauptman (1982a, b) 
derived new probability distributions for threee-phase 
structure invariants in the SIR and OAS cases. The 
formulas proved to be more reliable than Cochran's 
distribution. However, there is still the potential to 
improve Hauptman's formulas by making use of 
heavy-atom information. In this context Fortier, 
Moore & Fraser (1985) obtained the full range (-1 
to 1) of estimates of cosine invariants. However, the 
procedure yields a twofold ambiguity which would 
lead to difficulties in the derivation of individual 
phases. In this paper, improved Hauptman distribu- 
tions are given, which make full use of the heavy-atom 
information. These distributions are then used instead 
of Cochran's distribution as the foundation of the 
individual phase derivation. The concept of 'best 
phase' (Fan Hai-fu, Han Fu-son & Qian Jin-zi, 1984) 
is also used for error treatment. 

Theoretical basis 

1. The probability distribution of three-phase structure 
invariants 

According to Hauptman (1982a), there are four 
kinds of three-phase structure invariants in the SIR 
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case, classified as 

0)0 : ~PH + (PK -1L ~ L  

0)1 : ~ H  "[- ~ K  "~" I'~L 

0) 2 = (,~H -3 t- 1./-rK'-~- 1/-/' L 

0)3 "~- 1/'ell "31- 1/)'K -at- 1/'rL, 

(1) 

where (pj and qtj (j = H, K or L) represent the phases 
of the structure factors from the native protein and 
the heavy-atom derivative respectively. With the 
similar approach of Hauptman, the probability distri- 
bution for all kinds of three-phase structure invariants 
can be obtained with the following unified expression: 

P~(w~IR,, R:, R3, S,, S2, S3) = (1/Ki) exp (A~ cos co~) 

( i = 0 ,  1,2,3) ,  (2) 

where Rj and Sj ( j  = 1, 2, 3) are the magnitudes of 
normalized structure factors associated with the 
native protein and heavy-atom derivative respec- 
tively. The notation system used here is the same as 
Hauptman's  except A~. With Hauptman's  (1982a) 
method, in order to calculate A~ one has to use the 
probability distribution of the two-phase invariant 
~ n -  grn, whose most probable value is ~H-- ~H = 0. 
This will seriously weaken the difference between the 
native and derivative structure; consequently, it tends 
to a degeneration towards the SIR phases leaving the 
phase ambiguity unresolved. 

In order to overcome this disadvantage, more 
accurate values of cos Iq~ - ~[  should be used. This 
can be accomplished by calculating cos Iq~ - g-'l from 
experimental data rather than by making a probabilis- 
tic estimation (Fortier, Moore & Fraser, 1985). Letting 
Fp, Fp O, FQ denote the structure factors contributed 
from the native protein, the derivative and the heavy- 
atom substructure respectively, we have 

cos l~ - ~ l  = ( F2 + F 2 o -  F2o)/2FpFp o. (3) 

This can be used to replace T(z) in the expression 
for the A/s  in equations (3.14), (3.18), (3.21) and 
(3.24) of Hauptman's  paper. 

In order to reduce the phase problem to a matter 
of sign choice, the following relations are substituted 
into Hauptman's  formulas: 

(p. = (p ~ + A~,H, (4)  

9". = (pb+ ,a~H, (5) 

where Ch is the phase of F o while la~HI, laV'sl can 
be calculated from the phase-vector diagram (Fig. 1). 
Finally, for further simplification, the triplet phase 
invariants of the heavy-atom substructure, (Ph + q~k + 
q~., are made equal to zero. This is a good approxima- 
tion since the heavy-atom substructure is in fact a 
simple small structure. The Hauptman distribution 
now becomes 

p,(A0), I R,, R2, R3, S,, $2, $3) 

= ( l /K , )  exp (Ai cos A0)i) 

where 

( i = 0 ,  1,2,3) ,  (6) 

A0) 0 : A~H + ACpg a t- A~L 

A0) l = ACpH-F Aqgg+ Aa/)" L 

A0) 2 = A~pH-t- A~g-t- A a]-tL 

Aw 3 : A l f ,  r H + A 1/ZK--~- A~ft L . 

(7) 

In the OAS case, the Hauptman distribution can 
be improved similarly. We have 

F2-H-2F'~2)/2FHF-H, (8) 

where Fn and ~u are the magnitude and phase of 
the structure factor contributed from both normal 
scattering and the real part of anomalous scattering, 
while F~ is the magnitude of the imaginary part of 
anomalous scattering from the heavy atoms (Fig. 2). 
The phase doublets are of the same form as (3). 
Incorporating (8) into Hauptman's  formulas instead 

B 

Fig. 1. Phase-vector diagram showing the enantiomorphous phase 
doublet arising from the SIR method. 

A 

Fig. 2. Phase-vector diagram showing the enantiomorphous phase 
doublet arising from the OAS method, to is the phase difference 
between F~ and F o, which equals ~r/2 if all the anomalous 
scattering atoms are of the same kind. 
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of z~ [see equations (3.39) (3.54) of Hauptman 
(1982b)], one obtains 

Pi( ~~i) : ( 1 / Ki) exp [ Ai cos (Oi - toi) ] 

( j = 0 ,  1 , 2 , 3 , - 0 , - 1 , - 2 , - 3 ) .  (9) 

The notations of these distributions are similar to 
those of Hauptman. 

2. Individual phase determination 

The Cochran distribution and the distributions of 
(2) and (9) have a common form: 

P(~Pn) = ( 1 / K ) exp [ B cos ( ~Pn- Cn ' -  ~Pn-n'- scn,n ') ]. 

(10) 

In a practical iterative procedure the calculation can 
be made much simpler if we can obtain the total 
distribution of ~PH by the product of individual 
P(~pn)'s corresponding to different H'. However this 
is in conflict with Hauptman's theory since (2) and 
(9) are valid only for single Y,2 relationships. A com- 
promise way to use (10) is to use (2) or (9) to estimate 
the value of fn.n'* while the Cochran distribution is 
used to obtain the value of B. 

Replacing ~p by ~p'+A~p in (10) one obtains the 
conditional probability for A~ri to be positive as 

P+(A~.)  = 1 i [ ~+~ tanh kRH sin A~on ~, RH,RH-H, 
H' 

xsin (4~ + A~ow+ Aq~H_w- f~,H,) ] ,  (11) 

where 

~;=-~h+~h,+~h-.,. 
In order to deal with the experimental SIR or OAS 

data, the concept of 'best phase' should be introduced 
(Fan Hai-fu, Han Fu-san & Qian Jin-zi, 1984). The 
'best' value of the normalized structure factor can be 

* In the SIR case ~H,H' equals 0 or ~" according as Ai in (2) is 
positive or negative. In the OAS case fH,H' equals to i in (9). 

Table 1. Average errors in estimated values of 140 000 
three-phase invariants arranged in descending order of 
Ai and cumulated in 14 groups (the number of 

invariants in each group is 10 000) 

Gn: Group number. I: Results from (6). II: Results from Haupt- 
man's formula. Min: Minimum value of IA,[ in the group. Per: 
Percentage of correctly estimated signs of cosine invariants. Er: 
Average magnitude of the error of invariants in degrees. 

I II 
Gn Min Per (%) Er (°) Min Per (%) Er (°) 

1 2.60 96-0 35.0 2.53 95.8 36.1 
2 2.10 94.6 37.8 2.05 93-0 40.5 
3 1.84 94.7 37.6 1.80 92.7 41.0 
4 1-67 94.1 38.8 1.64 90.7 43-6 
5 1.54 93.7 39.2 1.52 89"5 44.6 
6 1.44 92.5 41.0 1.42 88.2 46.5 
7 1-36 93"3 39.5 1.34 87.1 47.4 
8 1-29 93.0 40.4 1.28 86"9 47.8 
9 1.23 92.5 41.1 1.22 86-2 49.1 

10 1-18 92.7 40.6 1.17 85.3 49.6 
11 1.13 91.9 42.1 1.13 84.6 50.4 
12 1.09 91.8 41.8 1.08 84.3 51.0 
13 1.05 91.6 42.2 1.04 82.9 52.3 
14 1-02 91-5 42.6 1-01 82-6 53-1 

expressed as 

EHbest = mnRrI exp (icon b~t), (12) 

where Ol~i-ibes t and mn are known as the best phase 
and the figure of merit in protein crystallography. 
D e f i n i n g  A~Hbest = anb~st-~Ph, one obtains 

tan (A~nb~st) = 2(P+-½) sin IA~nl/cos A~n , (13) 

mn=exp  (-trE/2)[p2+p2-+2P+P_ cos 2 Atpn] 1/2, 

(14) 

where trn can be obtained from the standard deviation 
D of the 'lack of closure error' (Blow & Crick, 1959). 
Replacing EH, and En-rl, by their 'best' values, (11) 
becomes 

p÷ 11 [ 
=~+~tanh kRns in  A~oH Y.. mwRwmn-wRn_w 

H' 

xsin (~;+A~0wbest+A~0H-Wbest--fn,W)]. (15) 

Starting phases can be obtained by setting initial 
values of all the P÷'s equal to 0.5. The flow chart of 
the iterative process is given in Fig. 3. For the sake 
of simplicity, ~ is set to zero. 

IA~I, P+ ~ A~b.~, m 

A~ = sign (P+ - 0-5)14~p1 

Fig. 3. Flow chart of iteration. 
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Table 2. Errors in the estimation of signs of 1000 A~on's arranged in descending order of p÷_l +½ 

Procedure 1: Test calculation for formulas of this paper. Procedure 2: Abstracted Table 2 of Fan Hai-fu, Han Fu-son, Qian Jin-zi & 
Yao Jia-xing (1984). Procedure 3: Results of Langs (1986). Gn: Group number. Ngr: Number of reflections in the group. P (%): 

1 1 Minimum value of  lP+-~l+~ in the group. Per (%) Percentage of  the correctly estimated signs of A¢. Er (°): Average magnitude of  the 
error of phases in degrees. CI:  Results from Fig. 3 starting from P+ = 0.5. C2: Results from Fig. 3 using results of C1 as input. 

Procedure 1 Procedure 2 Procedure 
3 

C1 C2 I II 
Gn Ngr P Per Er P Per Er P Per Er P Per Er Er 

1 200 90.7 94.5 6.6 99.6 96.5 3.7 88.2 94.5 7-0 98-3 97-5 2.0 
2 400 75"5 90-0 10.2 94.4 93"5 6"9 74.6 86"3 15"0 89.7 93"3 7"0 
3 600 63"3 82.7 15.7 78.7 85.7 i 1"4 63.2 80.7 20.0 74.8 86.0 13"0 
4 800 54.2 77-6 17-7 61"5 79.3 14.7 55"3 72.5 24"0 59-4 78"4 17"0 
5 1000 50-0 73"1 17.5 50.0 75.3 15-7 50"0 67.6 25.0 50"0 73.8 18.0 50.0 

Table 3. Errors in the estimation of signs of 2000 A~on' s 
1 1 arranged in descending order of [P÷ ~1+~ 

All the notations are the same as in procedure 1 of  Table 2. 

Gn Ngr P (%) Per (%) Er (°) 

C 1 1 2000 50.0 74.0 17.2 

C2 

1 200 100"0 98"5 1"6 
2 400 100"0 95"2 5" 1 
3 600 100"0 92"2 8"2 
4 800 100"0 88"2 12.3 
5 I000 99.7 85"9 13"5 
6 1200 97.4 83" 1 14"8 
7 1400 89"7 79"9 15-8 
8 1600 76"9 77.4 16"6 
9 1800 60"6 75"0 17"0 

10 2000 50"0 74"9 16"3 

Test calculation 

All the test calculations below are based on error-free 
SIR data from the native insulin (molecular weight 
---12000) and its Pb derivative. Crystals of insulin 
belong to space group R3 with unit-cell parameters 
a = 82.5, c = 34.0 ~ ,  ~/= 120 ° and Z = 9. The data were 
calculated from the known atomic parameters. There 
are 6371 independent reflections within the resolution 
limit of 1.9 ,A,. 

1. Test of equation (6) 

2000 largest E 's  of the native protein and 2000 
largest G's of the Pb derivative were selected to test 
equation (6). Meanwhile, as a comparison, triplet 
structure invariants were also estimated by Haupt- 
man's distribution. The results are summarized in 
Table 1, in which the ~2 relationships are arranged 
and grouped in descending order of calculated IAl's. 
As anticipated the incorporation of heavy-atom infor- 
mation led to better results than those from the 
original Hauptman formula. 

2. Individual phase derivation according to flow 
chart of Fig. 3 

Both Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao 
Jia-xing (1984) and Langs (1986) employed error-free 

data for insulin in their test calculations. For com- 
parison with their results, we use the 1000 largest E's  
and the corresponding G's to estimate individual 
phases. Only the largest 56 000 ~2 relationships are 
included in the calculation. The results are listed in 
Table 2. The column headed ' C I '  shows that, with 
Fig. 3, it is possible to obtain a very large starting set 
of good quality without any preliminary knowledge 
of the sign of A~n. After one cycle of iteration (see 
Fig. 3), the column headed 'C2 '  shows considerable 
improvement in the starting phases. As can be seen 
the calculated probabilities P from Fig. 3 are in good 
agreement with the percentages of the correctly esti- 
mated signs of A~o and the results are much more 
accurate than those from other procedures. 

For solving the phase problem of macromolecules, 
much larger starting sets will be required. We have 
also performed the test calculation with 2000 largest 
E's  and G's, and 470 000 Y,2 relationships. The results 
are summarized in Table 3. This shows that very large 
sets of phases can be evaluated initially and improved 
iteratively using the procedure shown in flow chart 
of Fig. 3. By comparison with Table 2, it can also be 
seen that the participation of more Y~2 relationships 
can lead to better results. 

HQ is indebted to Professor H. Hauptman for 
helpful discussions and to Drs Yao Jia-xing, Gu 
Yuan-xin and Qian Jin-zi for their help in computa- 
tional work. FHF would like to thank Professor G. 
Dodson and E. Dodson for making available the 
insulin data. 
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Abstract 

It is predicted that, at some sufficiently high level of 
sensitivity, two streaks intersecting at the Bragg point 
and symmetrically situated about the reciprocal- 
lattice vector G should always be observable in a 
diffraction experiment. 

Introduction 

We show here that the close examination of a Bragg 
point G in any diffraction experiment will reveal the 
presence of two streaks, intersecting at G and sym- 
metrically situated about the radial line leading from 
the origin of reciprocal space to the point G, as shown 
in Fig. 1. The angle X between the two streaks will 
depend upon the instrumental parameters as dis- 
cussed below, but can be expected to approach 20~ 
in most cases. We believe that the occurrence of these 
streaks is a very general instrumental phenomenon, 
and will be observed at some level of sensitivity in 
all experiments. Our thinking here is guided by 

-• 
Wnarrow 

k '  

0 

~ type Tr streak 

type I streak 

tan ; = [ 1-P-----°2)tan 0 B 
~, 1"t'po2 

go'-- Wnarrow/Wbroad 

Fig. 1. Orientation of instrumentally generated streaks in 
reciprocal space. 
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experience with high-resolution high-sensitivity 
triple-axis neutron diffraction experiments, which can 
routinely be carried out in the sensitivity range of 
10 -4 to  10 -6 of the Bragg point intensity. The reason- 
ing and analysis given here apply equally well to 
high-sensitivity X-ray diffraction experiments, such 
as those designed to examine Huang scattering or 
thermal diffuse scattering (TDS). 

We label the two streaks type I and type II. The 
occurrence of the type I streak is well known, 
although its physical origin is rarely examined in any 
detail. It occurs when the Bragg point G falls on the 
sphere of reflection, giving a strong reflected beam at 
a scattering angle 20 = 20B, but the detector is situated 
at an angle y away from the nominal scattering angle 
20n that is required to fully accept this Bragg beam 
(Fig. 2). Normally, if y is several times the resolution 

/•D (13) Detector/Analyzer 
Soller Collimator 

III Detector 
I1~ Acceptance 

ct ion  

Incident \ ~" / 
Beam Soller ~ 
Colh'mator ~ Vacuum Container 

~ n  T°(°) 
t Beam 

O- -~  

Fig. 2. Schematic diagram of typical diffraction experiment, show- 
ing the possibility of small-angle scattering of the incident and 
diffracted beams by the vacuum container surrounding the 
sample. The small-angle scattering has the effect of creating an 
incident beam I0(ot) having a broad component in addition to 
the original narrow component. Small-angle scattering in the 
diffracted beam leads to a detector acceptance function D(fl) 
having a broad component in addition to a narrow component. 
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