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USE OF MODIFIED SAYRE EQUATION FOR SUPERSTRUCTURES

Fan Hai-fu
Research Group on Crystal Structure Analysis
Institute of Physics, Chinese Academy of Sciences, Beiljing, China

1. PSEUDO-TRANSLATIONAL SYMMETRY AND PSEUDO-SYSTEMATIC EXTINCTION

For a crystal having a pseudo-translation-vector ¢t =‘E/n , where T is the
shortest exact translation-vector in the crystal parallel to t and n is an inte-

ger, the structure factor can be wrltten approximately as follow ( Fan &
Zheng, 1982 ):
N/n ‘20 M- T 2N H '
£ o~ Z _feat ?[""‘"J'[f-f- 4.?‘7Z~-£+‘.‘.‘ +e,¢‘zqz—£.(;z.,f)£]
~E = (1)
The sum of the series in the bracket of (1) is given by
exp(i2ZH.nt) - 1 { n, when H.t = integer
S = —- =
exp(iZ2Z B.t) - 1 0, when H.t # integer

Notice that H.nt = H.T = integer. Hence, all reflections with H.t # integer will
be sy qtemaklca11y very weak leading to an effect of pseudo~systemat1c extinction.
The phases of these 'weak' reflections will be very difficult to determine by
conventional methods.

I1. PHASES OF THE 'WEAK' REFLECTIONS DERIVED FROM THE 'STRONG’ ONES

1. Modified Sayre equation for partially known structures

For a squared structure /Dz(lﬂ) , the structure factor of which can be
written as
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If the atoms in _PC2) do not cverlap each other, then Fi:  can be expressed
by the positional vector 7, of the atoms in pPCry iTe.

L

:332 J_SE,JQWH'Q
~ 4=t d ) (3)

sq , |
where :& is the atomic scattering factor of the jth squared atom. Let the sub-
scripts u and p denote the unknown and the known part of the structure respec-

tively, then (3) becomes

5. 52 .hZﬂUH,_u ,f' Aﬁﬂ”ﬁfugu

Assuming that the unknown part of the structure is composed of identical atoms,
we can write
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let  tfa,=fR/fu s Vap =f0/f,

we obtain

5 __ f <ML 12l -z 1 _ 7 2y
Fy=3 LZhe “+S£5€ *I+Z(d- £ ) %e »
= 1 ._L.__JL
Go N '*-E(czp Qg )...Eg,f ? | (5)

where fg,p denotes the contribution of the known part to the structure factor
E . Substituting (5) into (2) it finally follows that

~H v g”ﬁ'”ﬁ'ﬁ ‘ré’(d-ﬂ /)"’f‘-f'f’ (6)
| Apart from the other applications (Fan, 1965), (6) can be used to facilitate the
determination of the phases of the 'weak' reflections when some kind of pseudo-

translational symmetry occurs. This is elucidated in the following example (Fan,
1975):

SHAS, CSH605N3K

The crystals belong to space group P212121 with a=7.51, b=9.95, ¢=10.98 R
and Z=4. The arrangement of the K-atoms possesses a subperiodicity of tramslation
, t = (a + b + c) / 2. Consequently reflections with h+k+l odd are systematically
'weak'. The phases of which were proved to be difficult to determine by either
Patterson or conventional direct methods.

Let ,f: and F§ denote the structure factors with h+k+l odd and even res-

pectively. Notice that _f = 0 in the present example, then according to
(6) we can write -P
0 e
F.a — aﬂ z z F y &
&V g TRTEA (7)

e
Assuming that the phases of J;hnrare controlled by the heavy-atoms, then the

phases of F, can be easily derived from (7). Fig.la shows the Fourier projec-
tion along t e a axis calculated with the heavy-atom phases only. In this projec-
tion there are two pseudo mirror planes, shown as two dotted lines parallel to
the b and ¢ axes repectively, which are originated from the pseudo-translational
symmetry t Flg 1b shows the Fourier projection calculated using heavy-atom
phases for the 'strong' reflections and direct method phases for the 'weak' ones,
In this projection, the pseudo-symmetry has been effectively eliminated and the
true structure is revealed clearly.

2. Modified Sayre equation for superstructures

A superstructure can be described by superimposing a difference structure on
to a subcell-structure, in which the atoms are related exactly by the pseudo-
translational symmetry. We write

PLO=L  (Z)+apcr) : .
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By squaring both sides of (8) and neglecting the term Afz'c_{:) , it follows that

pALrI=Pr (ZI+2L, ,CLOAPCY)

(9)
.from which, by Fourier transformation, one finds
'f; z-f;.!rub ” %‘E‘Eﬁ'sub WCu-p (10)
On the other hand, by Fourier transforming (8), we have
Eu = Lyouy * 45y (11)

Consider a reciprocal vector H, if it does not fall on a grid point of the reci-
procal lattice of the subcell-structure then it must correspond to a 'weak' (Su-

perstructure) reflection. In this case both F" and Fusub equal zero.
Then from (10} and (l11), we obtain | ¥ sub - L su |
_ =< < !
’5{#& = V g v H sub ~A-H wk 3 (12)

whera the subscript wk denotes the 'weak' reflection. Assuming that the crvstal
congists of nearly identical atoms or that the contribution of the heavy-atoms to
the superstructure reflections are either nearly zero or approximately as weak as
those of the light-atoms, we have

~-—-—

=y EX Y Dy 1

where f is the averaged atomic scattering factor, f" is the averaged scattering
factor of the squared atoms and L= /£ . Substituting (13) into (12), we
finally obtain

R 5 F
K wk V n Lo sus Lu-n wi

(14)

For a superstructure, the phases of the subcell-structure reflections can be de-
termined by conventional methods without much difficulties. Then with equation
(14) the phases of the 'weak' (superstructure) reflections can be derived by
making use of the phases of the subcell-structure reflections. The method has
been verified using two typical superstructures (Fan, He, Qian & Liu, 1978}:

Freielebenite, PbAng53

The structure was sclved by Ito & Nowacki (19743) It belongs to space group
P2 /a with a=7.518, b=12.809, ¢=5.940 3 B=92, 25° and Z=4. There are two pseudo-
tran5¢at10nﬂvectors in the structure, i.e. = a/2 and t = b/3. 105 reflections
of the hkO zone were used in the test. The pﬁases (31gns) of 11 'strong’' reflec~-
tions with h = 2n and k = 3n were first derived by conventional direct method
Then by using a symbolic addition procedure, the signs of 68 out of the total 94
'weak' reflections were derived frem (14). These reflections were arraneged in

descending order of -
3 w=|Fyl. Z!FH sich E30 -1 wic]
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and cumulated into 4 groups, which contain reflections with w greater than the
averaged value of w times 0.3, 0.2, 0.1 and 0.0 respectively The result is
shown in Table 1.

Iordanite, Pb28A$12546

The structure was solved by Ito & Nowacki (1974b) It belongs to space group
P21/m with a=8.918, b=31.899, c=8.462 R ‘ﬁ=117 79° and Z=1. There are two pseudo-
translation-vectors in the structure, i.e. = a/2 and t2 =c/2. 252 reflections
of the hk0O zone and 222 reflections of the Oﬁl zone were used in the test. They
were treated in the way similar to that in the preceding example. The results are
listed in Tables 2 and 3.

From the results shown above, it can be'recognized that both the two tested
superstructures, Freielebenite and Iordanite, may actually be solved by the me-
thod described.

ITI. PROGRAMS FOR SOLVING CRYSTAL STRUCTURES EAVING PSEUDO-TRANSLATIONAL SYMMETRY

The procedure described above has been improved and made automatic leading
to a modified version of the MULTAN-80 (Fan, Yao, Main & Woolfson, 1983). The
program has been proved,by three practical examples,to be very efficient, It can
solve superstructures automatically without the necessity of knowing the subcell-
structure. A new version is to be released by the end of this year, which
possesses the following feathers:

1. The intensity data are searched automatically to see whether there exists
any pseudo-systematic extinction. If so, the reflections are grouped according to
the index relationships found by the program. Alternatively the user can also in-
put index relationships for the classification of reflections in different groups.

2. The temperature and scaling factors are calculated for different index
groups separatelv or the user may specify the values of these factors for dif-
ferent Index groups independently.

3. The reflections which participate in the phase derivation are selected
according to the E values calculated independently for different index groups.
However, the E values actually used in the tangent refinement are those calculated
according to the overall temperature and scaling factors.

4. The tangent refinement will be carried out in two steps. In the first
step, only the phases of the 'strong' reflections are developed. Then in the se-
cond step, those phases previously derived and having their weight greater than
a certain limit will be treated as known phases and the phases of the 'weak' re-

flections together with those of the remaining 'strong' ones are developed.
5. Unlike the original MULTAN-80 program, E-maps are calculated using the E

values before, but not after, rescaling.
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Fig. 1. Fouricr projections of SHAS.

a) Calculated with the h=avy-atom phases.

b) Translational ambiguity resolved using the modified
Sayre equation.

Table 1 Table 2 Table 3

Test on 68 'weak' hkO Test on 118 'weak' hkO Test on 72 'weak' 0Okl
. 2 ) af -
reflections of PbAngS3 reflections of Pb28A512846 reflections of Pb28A312546
~_Gn  Wmin Nr % Gn Wmin Nr yA Gn Wmin Nr %
1 3<W> 41 100 1 3<W> 58 100 A 3<W> 39 24.9
2 24W> 45 97.8 2 L2{W> 70 100 2 L24W> 46 £9.1
3 CAW> 59 91.5 3 LA¢<W> B4 98.8 3 . L<W> 55 85.5
4 .0 68 88.2 4 .0 118 89.0 4 .0 72 79.2
Gn --- Group number;
Wmin --- The minimum value of W in the group;
{W> -~- The averaged W over the whole set of 'weak' reflections;
Nr ~-—- The number of reflections in the group;
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, --- The percentage of reflections with signs correctly determined.
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