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One of the Iimportant features of the program system SAPI-85
is the automatic search and treatment of pseudo-symmetries. In this

paper, the theoretical background is described and examples are
given.

PSEUDO-SYMMETRY AND PHASE AMEBIGUITY

According to Fan and Zheng (19B2), structure determination
using Patterson or direct methods may result in some kind of am-

biguity if the structure possesses either pseudo-translational
symmetry or pseudo-centrosymmetry.

1. Translational phase ambiguity due to pseudo-translational sym-
metry

If in a crystal structure there exists a pseudo-translation
vector t = T/n , where T is the shortest lattice vector parallel
to £t and n is an integer, then the structure factor can be writ-
ten approximately as below

N/n
F(H) ¥ ) f{(1expliZfH.r(j)l{l+exp({iZTH.t)+exp(i2WH.2t)+,..
j=1

The sum of the series in the bracket of (1) is given by

n, if H.t = integer
S = Cexp(i27TH.nt}-11/Lexp(i2 MH.£t)-1] = { _
0, if H.t # integer

Notice that H.nt = H.T = integer . Hence, all reflections with
H.t # integer will be systematically very weak showing an effect
of pseudo-systematic extinction. The phase of these ‘weak’ re-
flections will be very difficult to determine by conventional
methods. This leads to the so-called translational phase ambigui-
ty.

2. Enantiomorphous phase ambiguity due to pseudo-centrosymmetry

Non-centrosymmetric structures can reveal pseudo-centrosym-
metry if they contain some dominating heavy atoms in a centrosym-
metric arrangem#nt. In this case either Patterson or the conven-
tional direct methods coften results in a pseudo-tentrosymmetric
image, in which the true structure and its enantiomorph are super-
imposed. Thus in the reciprocal space there will exist two equally
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possible phases for each reflection leading to the so-called enan-
tiomorphous phase ambiguity. The phase doublets can be expressed
as:

p(H) = §'(H) +-|AP(H)| , where ¢'(H) = 27H.r(o) , r(o) is the

positional vector of the pseudo-inverse centre in the unit cell.
If the origin of the unit cell is fixed at the pseudo-inverse cen-
tre, we can obtain from the resulting pseudo-centrosymmetric image
the real part A(H) and the absolute value of the imaginary part
B(H} for each structure factor {Fan and Zheng, 1978). Hence the
enantiomorphous phase ambiguity 1s in fact a sign ambiguity on the
imaginary part of the structure factors.

THE MODIFIED SAYRE EQUATIONS

1. Modified Sayre equation for structures containing heavy atoms
in known positions (Fan, 196&5a}

2 sq
For a squared structure £ (r), the structure factor F (H)
can be written as

5q
F (H) = (1/V) ¥ F(H’)} F(H-H') {(2)

Hl

3q
If the atoms in f(r) do not overlap each other, then F (H) can
be expressed by the positional vector r(j) of the atoms in
plr), i.e.

g gﬁ sq
F (HY =} f (3) expCi27T H.r{j)1 (3}
i=1

39 th
where f (j) is the atomic scattering factor of the j atom.
let the subscript u denotes atoms from the unknown part of the

structure, while p denotes the heavy atoms in known positions.
(3) becomes

aq acy 59
F (H) = 3§ f (u) expCiZ7CH.r(uw1 + 3 £ (p) expCi2WH.rip)3. (4)
u P

Assuming that the unknown part of the structure is composed of
identic&l_atnms, we can write

sq
F (H) =

aq 39
Cf (W/fWNf(wexpli2TTH.r(WI+Lf (W /LW f(plexpli2rH.rip) I+

u P

sq | sq
JLE (p)/f(p)If(plexpCi2 TH.r(p)I-Cf (W /f(WI¥f(plexpli2ZH.r(p)l.
P P

(3)
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- 1s 59
Let l/a(u) « f (u)/f{u) and 1l/al(p) =f (p)/fi{p) ,
we obtailn

sq
F(H) = Cl/a(wI{ ) f(uwexpli27H.r(ul)l + y f(plexpCi2MH.r(p}1 3}
u P

+ Y Cl/a(p) - 1/a(u)d f(plexpCi2 ZH.r(p)1
P

= L1/atu)IF(H) + } C1l/ai(p} - 1/alu)] F(H,p) , (6)
P

th
where F(H,p) is the contribution from the p heavy atom. Sub-
stituting (&) into (2Z) it finally follows that

F{H) = Calu}/V] Z F(H'} F(H-H’') - z fa(u)/atp) - 11 F(H,p) . (7)
H* P

This is the modified Sayre eguation, which has no limitation on
the atomic species in the known part of the structure. With (7)
the heavy-atom phases can be extended and refined by direct me-
thods.

2. Meodifled Sayre equation dealing with pseudo-translational sym-

metry due to the special arrangement of heavy atoms in known
positions

In this case the heavy atoms will have no contribution to

some class of reflections (systematically weak reflections).
For this " kind of reflections (7) reduces to

Q O

F (H) = Ca(u)}/vl ) F (H") F(H-H') , (8)
Hl

O

where F (H) denotes the structure factors in which the heavy-atom
contribution equals zero (systematically ‘weak’ reflections). (B)
can be used to derive the phases of 'weak’ reflections from the

‘strong’ ones. This has been verilfied with the structure of SHAS,

The structure belongs to space group P 24 21 21 with
Q
a=7.51, b=9,95, ¢=10.98 A and Z=4. The arrangement of the heavy
atoms, K, possesses a subperiodicity of translation, t={a+b+c)/2 .
Consequently reflections with h+k+l odd are systematically 'weak’.
The phasea of which were proved to be difficult to determine by
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either Patterson or conventional direct methods. However using (8}
and assuming that the phasea of F(H-H’') are dominated by the heavy
o
atoms, the phases of F (H) can be easily derlved. Fig.la showes the
Fourier projection along the a axis calculated with the heavy-atom
phases only. In this projection there are two pseudo mirror planes,
shown as two dotted lines parallel toc the b and ¢ axes respectively
, which are due to the pseudo-translational symmetry t. Fig.lb shows
the Fourier projection calculated using heavy-atom phases for the
‘strong’ reflections and direct-method phases for the ‘weak’ ones.
In this projection, the pseudo-symmetry has been effectively elimi-
nated and the true structure is revealed clearly.

Fig. 1. Fourier propectians of SHAS,

a} Calculated with the heavy-atom phases.

b} Translational ambiguity resolved wsing the modified
Sayre equation.

(b)

3. Modified Sayre equation for superstructures

Pseudo-translational symmetry may be also due to the special
arrangement of all the atoms in the unit cell, their positions can
only be known exactly after the whole structure has been solved.
This is the case in dealing with superstructures. In this case we
need another type of modified Sayre equation (Fan, He, Qian and
Liu, 1978. See alsoc Fan, Yac, Main and Woolfson, 1983).

A superstructure can be described by superimposing a dif-
ference structure on to a subcell-structure, in which the atoms
are related exactly by the pseudo-translational symmetry. We have

flr)

P lr,sub) + A Plr) . (9)
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2
By squaring both sides of (9) and negleting the term ﬁhf (r), it
follows that

2 2
P ary = f tr,oup) + 2P(x,sump Piry (10)
from which, by Fourier transformation, one finds

8q sq
F (H) = F (H,sub) + (2/V) } F(H',sub) AF(H-H') . (11)
Hr

On the other hand, by Fourier transforming (9), we have
F{(H) = F{(H,sub) + AF{(H) , (12)

Now consider a reciprocal vector H, if it dose not fall on a grid

point of the reciprocal lattice of the subcell strucutre then it

must correspond to a ‘weak’ (superstructure) reflection. In this
89

case, both F (H,sub}) and F(H,sub) equal zero. Then from {(1l1)

and (12), we cbtain

sq
F (H,wk) = (2/V) } F(H’,sub) F{H-H’,wk) , {13)
Hl

where the subscript wk denotes the ‘weak’ reflections. Assuming
that the crystal consists of nearly identical atoms or that the
contribution of the heavy atoms to the superatructure reflections
are either zero or approximately as weak as those of the light
atoms, we have

s sq N
F (H,wk) ~ (f /f) ) f expCi27H.¥(4)}] = (1/a) F(H,wk) (14)
i=l
sq
where f 13 the averaged atomic scattering factor, f is the

2q
averaged scattering factor of the squared atoms and a = f£/f .
Substituting (14) into (13}, we finally obtain

F(H,wk) = (2a/V) )} F(H',sub) F(H-H’,wk) (15)
Hl
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For a superstructure, the phases of the subcell-structure reflec-

tions can be determinated by conventional methods without much dif-
ficulties. Then with equation (15) the phases of the ‘weak’ (super-

structure) reflections can be derived by making use of the phases

of the subcell-structure reflections, The method has been verified
using two typical superstructures (Fan, He, Qian and Liu, 1978):

Freielebenite, Pb Ag Sb 53
The structure was solved by Ito and Nowackif (1974a). It be-

o
longs to space group P 2,/a with a=7.518, b=12.B09, ¢=5.940 A ,

o
B=92.25 and Z=4 . There are two pseudo-translation vectors in
the structure, 1.e. t1= a/2 and t,= b/3 . 105 reflections of the

hk0 zone were used in the test. The phases (signs) of 1l ‘strong’
reflections with h=2n and k=3n were first derived by a conven-
tional direct method. Then by using a symbolic addition procedure
, the signs of 68 out of the total 94 'weak’ reflections were de-
rived from (15). These reflections were arranged in descending or-

der of

W = P(H,wk) )} F(H’,sub) F(H-H',wk)
Hl

and then cumulated into 4 groups, which contain reflections with W

greater than the averaged value of W times 0.3, 0.2, 0.1 and 0.0
respectively. The result is shown in Table 1.

Iordanite, Pb23 Aslz 546
The structure was solved by Ito and Nowacki (1974b). It be-

0O
longs to space group P 2;/m with a=8.918, b=31.899, c=8.462 A,
o
B=11?.79 and 2=1. There are twc pseudo-translational vectors
in the structure, i.e. t1= arz and ty= c/2 . 252 reflections of

the hkO zene and 222 reflections of the 0Okl zone were used in the
test. They were treated in the way similar to that in the preced-
ing example. The results are listed in Tables 2 and 3.

From the results » 1t can be recognized that both Freile-
lebenite and Iordanite may actually be solved by the method describ-
ed above.

Table 1
Test on 68 'weak’ hkO0 reflections of Pb Ag 8b Sq

Gn Wmin Nr %

3C(H> 41 100

1

2 L2{W> 45 97.8
3 -1<{W> 59 91.5
4

.0 68 88.2



Table 2 Table 3
Test on 118 'weak’ hkO Test on 72 ‘weak’ Okl
reflections of tha Aslz Sas reflections of Pb,yg Asy, S,u¢
Gn Hnin Nr % Gn Wmin Nr L
1 .3{W> 58 100 1 LI 39 94.9
2 .2¢W> 70 100 2 2{W> 46 89.1
3 .1<{W> B84 98.8 3 .1{HW> 55 85.5
4 .0 118 89.0 4 .0 72 79.2
Gn --- Group number;
HWomin --- The minimum value of W in the group;
{W> --—- The averaged W over the whole set of 'weak' reflections;
Nr ~-- The number of reflections in the group;
% --- The percentage of reflections with signs correctly deter-

mined.

4., Modified Sayre equation dealing with pseudo-centrosymmetry

In this case, conventional methods often result in a pseudo-
centrosymmetric solution containing both enantiomorphs. From such
a solution the real part A{(H) of the structure factord can be cal-
culated and the absolute value of the imaginary part B(H) can be

obtained as |B(H)| = CF(H)?* - am?at’?

By separating the real and the imaginary parts of the struc-

ture factors in (7), one obtains the so-called component relation
(Fan, 1965b)

B(H) = (2a/V) ) A(H') B(H-H') ] (16)
Hl‘

(16) can be used to derive the sign of the imaginary part of the
gtructure factors and resolve the enantiomorphous ambiguity. This
has been verified with the structure of ZCHW , C34 011 N H47 H1I
(Fan and Zheng, 1978).

The structure belongs to space group P 21 with a=12.58,

o o

b=14.38, ¢=11.00 A, ﬁ=114.6 and Z=2., Patterson analysis resaulted
in 44 enantiomorphous pairs of 'atoms’, of which two pairs are
ghost peaks. With these 44 pairs of ’‘atoms’, thé real part and the
absolute value of the imaginary part of 331 largest structure fac-
tors were calculated. The signs of the imaginary parts of the

structure factors were then derived using (16). The result is
shown in Fig.2.



Fig. 2. Composile Faurier maps of ZCW.

a) Enantiomorphous ambiguity resolved using the ‘com-
ponent reelaton” (The atoms unambiguously hxated
arc denoted by solid contour lines).

b) The final map.

S. Phase-difference relation

Replacing F(H) by F{H)expli@{(H)] and replacing ¢{(H) by
9’ (H) + AQ(H), (7) becomes

F(R)expliAQ(H)] = Cal(u)/V] )3 F(H‘)F(H—H'}exp{1["+A’{H')+ﬁ’(H-H’}]}
H' 3

- 1 (Calu)/a(p)1-1} F(H,plexp{iCP(H,p)-p’ (H)11,
P

where 9' = ¢ (H) + "(H'I + §°(H-H").
3

{(17)

From the imaginary part of (17), we obtain
Sinﬁ,(ﬂ) = {Calu)/V1 } F(H‘}F{H-H'151nE9’+ﬁ?tH‘1+5?(H-H'}]
H' 3

- ¥ ta(u)/a(p)-11 F(H,p)SinCP(H,p)-9* (H)II/F(H).  (18)
P

This is the so-called phase-difference relation, which is equiva-
lent to
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B'(H) = Ca(u)/V1 { } [A’(H')A’(H-H')}-B’(H')}B’(H-H')1Siny"
H 3

+ 2 ) A'(H)B'(H-H")Cosp'3
H' . 3

~ 2 Ca(u)/a(p)-11 F(H,p)SinCP(H,p)-9’ (H)]J (19)
P

where B'(H) = F(H)SinAQ(H) , A'(H) = F(H}CnsﬁytH) .

(19) may be regarded as the generalized component relation. (18)
or (19) can be used &alsc to solve the problem of enantiomorphous

phase ambigulty arising from single-i{isomorphous replacement cr one-
wave-length anomalous scattering technique (Fan, Han, Qian and Yao,
1984).

THE PROGRAM SYSTEM SAPI-85
(Yao, Zheng, Qian, Han, Gu and Fan, 19865)

The name SAPI is an abbreviation of ‘Structure Analysis Pro-

gram with Inteliigent control’. It may also be read inversely as
'Institute of Physics Academia Sinica'.

SAPI is based on MULTAN-80 (Main, Fiske, Hull, Lessinger,
Germain, Declercq and Woolfson, 19B0) and differs from which
by the following:

1. The program can automatically handle structures having

pseudo-translational symmetry leading directly to a correct solu-
tion in favourable cases.

2. The program can recognize pseudo-centrosymmetric solutions
when dealing with non-centrosymmetric structures. In addition, the
program can break the enantiomorphous ambiguity given a group of
atoms, each of which comes from either one of the two enantio-
morphs.

3. RANTAN procedure (Yao, 19Bl) is used instead of the phase
rermutaticn of MULTAN-80. In addition the RANTAN procedure has
been modified to provide an intelligent control on the path of
phase development according to the complexity of the structure
and the early-stage result during the phase development process.

4. The program provides facilities for calculating Patterson
and Minimum functions.

5. The program can ocutput density maps as ‘half-tone graphs’
on a conventional lineprinter. The size and constrast of the map
output can be controlled either automatically or manually.

6. The program includes a subroutine for the interpretation

of space group symbols, which is a modification of the program
written by Burzlaff and Hountas (19BZ2}).

The source program of SAPI-BS is available on request.
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