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Abstract As part of a wider study of the nature and
origins of cation order–disorder in micas, a variety of
computational techniques have been used to investigate
the nature of tetrahedral and octahedral ordering in
phengite, K2

[6](Al3Mg)[4](Si7Al)O20(OH)4. Values of the
atomic exchange interaction parameters Jn used to
model the energies of order–disorder were calculated.
Both tetrahedral Al–Si and octahedral Al–Mg ordering
were studied and hence three types of interaction pa-
rameter were necessary: for T–T, O–O and T–O inter-
actions (where T denotes tetrahedral sites and O denotes
octahedral sites). Values for the T–T and O–O interac-
tions were taken from results on other systems, whilst we
calculated new values for the T–O interactions. We have
demonstrated that modelling the octahedral and tetra-
hedral sheets alone and independently produces different
results from modelling a whole T–O–T layer, hence
justifying the inclusion of the T–O interactions. Simu-
lations of a whole T–O–T layer of phengite indicated the
presence of short-range order, but no long-range order
was observed.

Keywords Phengite Æ Cation ordering Æ Layer
silicates Æ Phase transitions Æ Monte Carlo simulations

Introduction

The mica group of minerals has a wide range of chemical
stabilities, due to the ability of the structure to accom-
modate a wide range of cationic substitutions in the sites
within the octahedral (O) and tetrahedral (T) sheets, as
well as in the interlayer region. Aside from variations in
the cation site occupancies of six- and fourfold sites of
the structure, different stacking sequences and rotations
of the T–O–T layers lead to polytypic variations.

Interest in order–disorder in phengites has arisen
from attempts to rationalize the thermobaric controls on
the formation of specific polytypes, the stability of which
may also be related to cation ordering in both the T and
O layers. In both the 3T and 2M1 polytypes there are
two symmetrically distinct tetrahedral sites, T1 and T2,
whereas the octahedral sites split into three distinct sites
(designated M1, M2 and M3) in the 3T phengite struc-
ture, and only one in 2M1 phengite (M2 and M3 become
equivalent by symmetry, and M1 is empty).

Order–disorder on the tetrahedral and octahedral
sites of phengite 3T has been studied as a function of
temperature using neutron diffraction by Pavese et al.
(1997), who suggested the occurrence of order in both
the tetrahedral and octahedral sites, independent of
temperature, as had been suggested previously from
petrological observations of the relative stability of
polytypes (Sassi et al. 1994 had suggested that the 3T
phengite was more ordered as a result of its high-pres-
sure environment of formation). Pavese et al. (1999)
then studied the tetrahedral order–disorder in a natural
phengite 2M1, measuring disorder at ambient condi-
tions, followed by a small degree of ordering upon
heating. Pavese et al. (2000) reconsidered the cation
partitioning in phengite 3T on the basis of data collected
from a different neutron instrument. Their revised
results were in full agreement with their earlier mea-
surement of octahedral order, but suggested that the
degree of tetrahedral order was lower than they had
previously thought. Ivaldi et al. (2001) studied a sample
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of coexisting phengite 2M1 and 3T using EMPA and
single-crystal X-ray diffraction, and concluded from
bond-length measurements that tetrahedral order was
absent in both polytypes, but that in the phengite 3T
there was partial octahedral order. Mookherjee et al.
(2001) studied a phengite 2M1 at high temperature by
neutron diffraction, but found no evidence for any
cation readjustment upon heating.

The experimental measurements of phengites by
neutron diffraction push against the limits of the tech-
nique for resolving small changes in occupancies across
the cation sites within these low-symmetry large unit-cell
structures, and show that the controls on cation ordering
still remain to be resolved. Here, we address this question
using the computational methods adopted earlier for
muscovite (Palin et al. 2001), and explore the relationship
between the ordering in both the T and the O layers of
phengite. In doing so, we attempt to determine the
strength of coupling within layers, and to identify the
important interactions that control the ordering patterns.

In a previous paper (Palin et al. 2001) we discussed
cation ordering in muscovite, K2

[6]Al4
[4](Si6Al2)O20(OH)4.

We showed that computational techniques could be used
successfully to model muscovite, which was a step
forward in the field owing to the hydrous nature of
muscovite and its dilute Al:Si ratio. Here, we extend our
work to phengite, K2

[6](Al3Mg)[4](Si7Al) O20(OH)4,
which is closely related to muscovite (via the substitution
[4]Si[6]Mg[6]Al)1

[4]Al)1), but which has three ordering
cation species and hence is more complicated to model.
The structure of the mineral is shown in Fig. 1; it con-
sists of sheets of AlO6 and MgO6 octahedra (with some
O being replaced by OH), sandwiched between two
sheets of SiO4 and AlO4 tetrahedra. Such structural
units are referred to as layers, and adjacent layers are
separated by a sheet of K cations. We consider in this
work the ordering of Al and Si across tetrahedral sites,
and the ordering of Al and Mg across octahedral sites.

In muscovite, we simulated both a single tetrahedral
sheet and a series of T–O–T layers, with the latter sim-
ulations including interactions between tetrahedral
sheets in adjacent layers and adjacent tetrahedral sheets
in the same layer. However, we discovered that in a
multilayer simulation starting from a completely
random initial configuration, the order produced was
two-dimensional, i.e. each tetrahedral sheet ordered
independently of its neighbouring sheets. This therefore
made it impossible on the time scale of our simulations
for three-dimensional ordering across the whole sample
to occur, on account of the large change required to shift
the ordering patterns in adjacent layers with respect to
one another. Indeed, the only way we were able to
produce data pertaining to three-dimensional order was
to start the simulation in an ordered arrangement and
monitor the changes on heating. The only difference we
recorded between the two-dimensional and three-di-
mensional cases was a different transition temperature,
with the form of graphs of the order parameter, heat
capacity and inverse susceptibility being similar for the

two cases. It is therefore not especially instructive to
include the interlayer interactions, and by analogy, in
our study of phengite, we investigate only one T–O–T
layer.

Methods

Basic strategy

Our method for simulating cation-ordering processes comprises
two stages. Firstly, we determine values for ordering interactions
by using empirical interatomic potentials and lattice energy relax-
ation methods. These values are then used to simulate ordering as a
function of temperature using Monte Carlo simulations. Our ap-
proach uses a model Hamiltonian for the ordering interactions; we
refer to this as the J formalism. We can write the energy of the
system in terms of separate pair interactions for the three types of
ordering cations present (Al, Mg and Si):

E ¼ E0 þ
X

n

Nn
Al�AlE

n
Al�Al þ Nn

Si�SiE
n
Si�Si þ Nn

Mg�MgEn
Mg�Mg

þ Nn
Si�AlE

n
Si�Al þ Nn

Mg�AlE
n
Mg�Al þ Nn

Mg�SiE
n
Mg�Si ; ð1Þ

where n indicates different types of neighbouring pairs of cations
(for example, pairs with different separations), and the total energy
is determined by summing over all types of interactions. E0 is a
constant term. It can be shown that this energy can also be ex-
pressed as

E ¼ E00 þ
X

n

NAl�AlðEn
Al�Al þ En

Mg�Si � En
Al�Si � En

Al�MgÞ

¼ E00 þ
X

n

Nn
Al�AlJn ; ð2Þ

Fig. 1 Structure of phengite 2M1 viewed down the a axis. Two
tetrahedral sheets and one octahedral sheet form a layer, and layers
are separated by sheets of interlayer K+ cations. The unit cell
encompasses two layers (indicated by the box)
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where E0¢ is a different constant term. The parameter J is called the
exchange interaction parameter, and subsumes the separate energy
terms for each pair of neighbours. The result we arrive at in Eq. (2)
is identical to that derived for two types of ordering cations in our
previous muscovite paper, except that the definition of J is differ-
ent. This difference does not, however, affect our analysis.

Model interatomic potentials

As mentioned above, the first task in the investigation is to deter-
mine values for the J parameters, which we achieve by using em-
pirical model interatomic potentials and relaxation of the lattice
energy. Previous studies (e.g. Post and Burnham 1986; Patel et al.
1991; Winkler et al. 1991; Collins and Catlow 1992; Dove et al.
1993; Thayaparam et al. 1994) have shown that the modelling of
crystal structures can be performed with fairly good accuracy using
such potentials, with one study (Sainz-Dı́az et al. 2001) showing
this specifically for dioctahedral 2:1 phyllosilicates.

All ions in the model are modelled using formal charges, except
the hydroxyl ions. The hydroxyl O and H ions have non-formal
charge values which sum to the overall hydroxyl formal charge of
)1e. We used four different types of interatomic potential in our
model, for which the equations are given below. We use the general
symbols E for energy, r for interatomic distance, and h for an angle
between two interatomic vectors, with a zero subscript indicating
an equilibrium value.

Short-range interactions for Si–O, Al–O, K–O and O–O are
modelled with Buckingham energy potentials:

E ¼ A expð�r=qÞ � Cr�6 ; ð3Þ
with the parameter C having zero value in the case of Al–O and
O–O. O–Si–O tetrahedral interactions and O–Al–O tetrahedral and
octahedral interactions are modelled with three-body potentials:

E ¼ 1

2
kðh� h0Þ2 : ð4Þ

O–H interactions within the hydroxyl group are modelled using a
Morse potential:

E ¼ Dfð1� exp½�aðr � r0Þ�Þ2 � 1g : ð5Þ
Finally, all non-hydroxyl O atoms are modelled by the shell model,
where they are considered to consist of a core comprising the nu-
cleus and tightly bound inner electrons, surrounded by a massless
shell of the remaining outer electrons. The cores are allocated a
charge of +0.84819e and the shells a charge of )2.84819e, such
that the formal charge for the ion is maintained. Core and shell are
held together by a harmonic interaction of the form

E ¼ 1

2
Kd2 ; ð6Þ

where d is the core-shell separation.
The values of the parameters a, C, k etc. are taken from a

variety of sources. The models have been tested for a wide range of
layer silicates by Sainz-Dı́az et al. (2001), and in our muscovite
work (Palin et al. 2001). Details of the values used are given in
Table 1.

Lattice energy calculations are performed with GULP (Gale
1997), where the electrostatic energy is summed by the Ewald
method. The lattice energies are relaxed using the Newton–Raph-
son minimization method.

Model testing

The model we used was adapted from our muscovite model. We
tested the model here by calculating the equilibrium structure as-
suming complete Al–Si disorder across the tetrahedral sites, and
complete Al–Mg disorder across the octahedral sites. We compared
the model to experimental data for the 2M1 polytype (Gueven
1971). In this structure, the formula unit is K2(Al3Mg)(Si7-
Al)O20(OH)4, with lattice parameters a ¼ 5.2112 Å, b ¼ 9.0383 Å,
c ¼ 19.9473 Å, b ¼ 95.769�. The hydrogen atoms were not located
by Gueven, so they were added to the structure (before relaxation)
at suitable positions to form hydroxyl groups. The relaxed struc-
ture had lattice parameters a ¼ 5.2479 Å, b ¼ 9.1185 Å,
c ¼ 19.5295 Å, b ¼ 96.880�, respectively, which differ from the
experimental values by 2.1% at most. The mean tetrahedral cation–
O distance was 1.627 Å (experiment) and 1.637 Å (calculation), the

Table 1 Parameter values used in the interatomic potentials for phengite. The label O1 indicates the hydroxyl-forming oxygen atoms; O2
indicates all other oxygen atoms; O indicates both 01 and 02 atmos

Potential type Atoms Parameter values

A q C rmax

Buckingham Si core–O1 core 999.9 0.3012 0 12
Buckingham Si core–O2 shell 1283.9077 0.3205 10.66 12
Buckingham Al core–O1 core 1460.3 0.29912 0 12
Buckingham Al core–O2 shell 1460.3 0.29912 0 12
Buckingham Mg core–O1 core 1428.5 0.2945 0 12
Buckingham Mg core–O2 shell 1428.5 0.2945 0 12
Buckingham K core–O shell 65269.7 0.213 0 12
Buckingham O shell–O shell 22764 0.149 27.88 12
Buckingham H core–O2 shell 325 0.25 0 12

D a r0 rmax

Morse O1 core–H core 7.0525 2.1986 0.9485 1.4

K

Spring (core–shell) O core–O shell 74.92

k h0 rmax (1–2) rmax (2–3) rmax (1–3)

Three-body O shell–Si core–O shell 2.0972 109.47 1.8 1.8 3.2
Three-body O shell–Al1 core–O shell 2.0972 109.47 1.95 1.95 3.4
Three-body O shell–Al2 core–O shell 2.0972 90 2.2 2.2 3.2
Three-body O shell–Mg core–O shell 2.0972 90 2.2 2.2 3.2
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mean octahedral cation–O distance was 1.963 Å (experiment) and
1.910 Å (calculation), the mean octahedral cation–OH distance was
1.942 Å (experiment) and 2.073 Å (calculation) the mean K–O
distance was 2.971 Å (experiment) and 2.963 Å (calculation) and
the mean O–H distance was 0.976 Å (calculation, no experimental
value given). There is good agreement for all distances, the worst
being the octahedral cation–OH distances with a 7% discrepancy,
but all other distances agree to within 2.5%.

Determination of the exchange interactions in phengite

Our model for phengite considers three different types of exchange
interactions: tetrahedron–tetrahedron (T–T), octahedron–octahe-
dron (O–O) and tetrahedron–octahedron (T–O). For the O–O in-
teractions, we used values that had previously been used in
smectites (sample 3 from Sainz-Dı́az et al. 2003). For the T–T in-
teractions we used values that we had previously used in muscovite,
with the values having been slightly adjusted by setting J3,T–T = 0.
These values are given in Table 2.

For the T–O interactions, we examined the structure using MSI
Cerius2 and chose the four shortest different interatomic distances
between atoms in the tetrahedral and octahedral sheets. We la-
belled these Ja–d. Figure 2 shows an octahedral sheet and one ad-
jacent tetrahedral sheet, and the distances assigned. Additionally,
Figures 3 and 4 show how the T–T and O–O interactions are
assigned. The distances within the structure corresponding to the
T–O interactions are given in Table 3.

The method we used for calculating the T–O interactions was as
follows. We used a supercell with periodic boundary conditions,
and calculated the energies of many different configurations with
the ordering cations randomly located on different sites in each
configuration. The supercell used was similar to the one used for
muscovite – a 2 · 2 · 1 supercell of the monoclinic C-centred cell,
containing 64 tetrahedral sites and 32 octahedral sites.

We generated 100 configurations using a spreadsheet method
(Bosenick et al. 2001), with 8 Al and 56 Si cations being placed on
the tetrahedral sites, and 8 Mg and 24 Al being placed on the
octahedral sites. We imposed the constraint that electrostatic
charge balance should be preserved in each layer. Each of the 100
configurations was completely relaxed (atomic positions and lattice
parameters) using GULP, the lattice energy minimization program.
We used the lattice parameters obtained from the previous energy
minimization run, in which the tetrahedral and octahedral sites
were set up with partial occupancies of Al/Si and Al/Mg corre-
sponding to complete disorder. The energy minimizations provided
100 different lattice energies, which form the E values in Eq. (2).

The spreadsheet method was used to generate the number of
Al–Al interactions for each exchange pair for each configuration.
Thus, we had 100 sets of values for NAl–Al, and coupled with the E
values, we could perform a linear regression fit to Eq. (2), to give
values for Jn. In fact, for the regression procedure, we used only the
energies and NAl–Al values from the configurations which optimized
successfully in GULP. We included the values of J1–4 (T–T) and
J1–4 (O–O) in the regression, but allowed only the values of Ja–d to

change during the fitting. The J values we obtained are given in
Table 3. The agreement between values of the lattice energies of the
different configurations and the corresponding values of the model
Hamiltonian is shown in Fig. 5. The correlation coefficient R2 was
0.67.

The values of the exchange constants Ja–d are typical of the
range of values obtained for other aluminosilicates (e.g. Thayapa-
ram et al. 1994, 1996; Dove et al. 2000), and following our earlier

Table 2 Values of atomic interaction parameters J for O–O and
T–T interactions. T–T interactions adapted from Palin et al. (2001).
O–O interactions-sample 3 from Sainz-Dı́az et al. (2003)

Interaction type Parameter Value (eV)

T–T J1 1.01
T–T J2 0.2
T–T J3 0
T–T J4 0.14
O–O J1 0.6195
O–O J2 0.1510
O–O J3 0.0662
O–O J4 0.0297

Fig. 2 Adjacent tetrahedral (large atoms) and octahedral (small
atoms) sheets, showing the assigned J parameters for T–O interac-
tions. The distances corresponding to the interactions are given in
Table 3. The dotted line shows an interaction which appears from the
Figure to be identical to Jc, but in fact its distance is larger than the
cutoff we employed

Fig. 3 Tetrahedral sheet showing assigned J parameters for T–T
interactions
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work we obtain the result that the closest neighbour pair (Table 3)
has the largest value of J. However, the fact that the value of Ja is
positive is of interest. This means that SiT–AlO and AlT–MgO pairs

of atoms are preferred over AlT–AlO and SiT–MgO pairs, where the
subscripts T and O denote the sites on the tetrahedral and octa-
hedral layers. If we were to consider only the effects of the elec-
trostatic charges we might have presumed that the electrostatic
interactions would prefer the latter set of pairings and hence give a
negative value of Ja. Instead, we believe that the primary origin of
the positive value of Ja arises from the effects of strain. It was
shown by McConnell et al. (1997) that the primary component of
the nearest-neighbour exchange interaction for Al/Si ordering in
framework aluminosilicate structures is from strain, and a simple
counting of charge distributions based on the use of formal changes
suggests that the electrostatic interactions in this latter case are
likely to be more significant than in the layer silicate being con-
sidered here. Usually, strain has the effect of preferring to have
small cations interlaced with large cations in order to minimize the
long-range strain. In the case of interactions between planes of
atoms, it is more likely that the T–O pairs of atoms would be most
easily accommodated if they are of the most similar size. This is
because the strain effects on the two layers would be most closely
matched, and the large–small interlace would be most useful op-
erating only within the individual layers. If we had a small cation in
one layer next to a large cation in the other layer, the small cation
would pull its layer inwards and the large cation would push its
layer outwards. There would then be a significant strain on the next
neighbour pair which could not easily be accommodated by a
different pair since the small Si and large Mg cations are confined
to the tetrahedral and octahedral layers, respectively.

It should be noted that there is a difference between the results
reported in this paper and the example calculations reported pre-
viously for phengite (Warren et al. 2001). In the latter study, the J
values were calculated from a limited dataset, for the purpose of
illustrating the method involved rather than arriving at exact re-
sults. The difference between the respective sets of J values gener-
ates a different ordered scheme, illustrating the sensitivity of such
complex systems (see below).

Monte Carlo methods

In our previous study of muscovite we were able to inspect the
J values and predict correctly the behaviour of the system from the
fact that J3 » 0 and J1,2,4 > 0. However, that study was of a single
ordering scheme over one type of site, with the sites in a 2-D array.
We do not expect, therefore, that it is as straightforward to predict
the behaviour for phengite, where we are simulating simultaneously
two ordering processes, over two different types of site, in a quasi-
2-D array (quasi-2-D since we are modelling only one T–O–T
layer). Instead, it may be broadly possible to suggest configurations
which are unlikely (for example, the relatively large values of J1,T–T,
J1,O–O and Ja,T–O may preclude the formation of Al–Al linkages
over these distances where possible), but we are now modelling
sufficiently complex systems for the Monte Carlo simulations to
become our most useful predictive tool.

The Monte Carlo method can be applied to the study of cation
ordering (Warren et al. 2001). We assign a variable Sj to each
cation site, where Sj = 1 if the site is occupied by Al, and zero
otherwise. Therefore, if we consider two sites, i and j, the product
SiSj is 1 when the sites are both occupied by Al, and zero otherwise.

Thus, we can express the energy as the following Hamiltonian:

H ¼
X

hi;ji
JijSiSj þ

X

i

ljSj ; ð7Þ

where the first term is the energy associated with the bonds, and the
second term is a chemical potential term. This term is necessary for
modelling phengite, since we seek to prevent the presence of [6] Si
and [4] Mg – there is no empirical evidence to show that any micas
contain [6] Si, and although there exist some synthetic micas with
[4] Mg, this has not yet been seen in phengites. We employ an
artificial chemical potential in this work, such that placing Si on [6]
or Mg on [4] causes a prohibitively large increase in the energy, but
the method is equally valid for systems in which real chemical
potentials have been evaluated.

Table 3 Values of atomic interaction parameters for T–O interac-
tions

Parameter Distance (Å) Value (eV)

Ja 3.10–3.23 0.75 (8)
Jb 4.37–4.60 0.06 (10)
Jc 5.27–5.42 0.02 (8)
Jd 5.13–5.24 0.24 (10)

Fig. 4 Octahedral sheet showing assigned J parameters for O–O
interactions

Fig. 5 Comparison of energies calculated from GULP and energies
calculated from the model Hamiltonian using all Js illustrated in Figs.
2–4. The straight line indicates a perfect fit
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We used our own MC program, Ossia. The program has been
written for parallel computers and enables the simulation of a
system at many different temperatures. More details can be found
on the internet at http://www.esc.cam.ac.uk/ossia.

The output of the MC runs includes expectation values for the
energy, ÆE æ and ÆE2æ; and also for the order parameter, ÆQæ and
ÆQ2æ. From these values it is possible to determine the heat capacity
C and the susceptibility v.

C ¼ hE
2i � hEi2

kBT 2
ð8Þ

v ¼ hQ
2i � hQi2

kBT
: ð9Þ

These quantities are useful in the study of phase transitions since
they are indicators of the ordering temperature Tc. This tempera-
ture is defined as the point at which the order parameter falls to
zero, but this can be difficult to measure accurately, since there are
large fluctuations in Q close to Tc. At a second-order phase tran-
sition, the values of C and v will diverge, which gives two further
estimates of the value of Tc.

We define the order parameter in terms of the occupancies of
both octahedral and tetrahedral sites, such that for complete dis-
order Q ¼ 0, and for complete order Q ¼ 1. The order parameter is
set up as follows. If for a particular site j in the unit cell, the
occupancy is sj, with sj,0 signifying the average occupancy at T ¼ 0
in the ordered structure, and sj,¥ is the average occupancy as
T fi ¥, the order parameter Qj for this site is defined as:

Qj ¼
sj � sj;1

sj;0 � sj;1
; ð10Þ

and then the overall order parameter over all sites in the unit cell is
defined as:

Q ¼ 1

n

X

j

Qj ; ð11Þ

where n is the total number of sites. It is important to note that the
order parameter definition given here is for the non-symmetry-
adapted order parameters that we obtain from Ossia, and not the
transformed symmetry-adapted order parameters, which we discuss
below.

Monte Carlo simulations of single tetrahedral sheet
and single octahedral sheet in phengite

In our muscovite study we found that the ordered
structure of a tetrahedral sheet with Al:Si = 1:3 was
long-range-ordered with all Al–Al linkages as J3. In this
work, we have extended this by modelling the behaviour
of a tetrahedral sheet with Al:Si = 1:7 as in phengite.
Additionally, we performed simulations on an octahe-
dral sheet with Al:Mg = 3:1 as in phengite.

The tetrahedral sheet simulation used only the T–T
interactions, and the octahedral sheet simulation used
only the O–O interactions. Each system consisted of 576
cation sites.

Examples of low-temperature output from these
cooling runs are shown in Figs. 6 and 7.

The behaviour of the tetrahedral sheet is quite dif-
ferent from that in muscovite, in that it does not show
any long-range order, although short-range order is
present, with Al atoms being arranged over J3 distances
(Fig. 6). This is an example of Al/Si dilution (Dove et al.
1996; Myers et al. 1998). In a dilute system, it is easy for

Al–Al linkages to be avoided, since the Al atoms can
simply form a dispersed arrangement, meaning there is
no requirement for long-range order.

Fig. 6 Low-T configuration for simulation of one tetrahedral sheet.
Grey spheres indicate Si atoms and black spheres Al atoms

Fig. 7 Low-T configuration for simulation of one octahedral sheet.
Grey spheres indicate Al and black spheres Mg. The pattern indicated
at A is that formed due to long-range order, whilst that at B is the
‘‘superhexagon’’ structure, here formed due to the existence of a
domain wall
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The octahedral sheet (Fig. 7) has chains of Mg atoms
in J3 positions. This structure is related to the ‘‘super-
hexagon’’ structure seen in the tetrahedral sheet of
muscovite (which had the same proportions of the or-
dering cations, albeit different species), except that the
chains of J3-linked Mg atoms are in phase rather than
out of phase. There is evidence for both the in-phase and
out-of-phase structures in Fig. 7, although the latter is
only present along domain walls rather than being the
dominant configuration. The presence of both structures
is not surprising, since they are very similar in energy – a
structure consisting completely of the in-phase chains
has an energy of 0.8093 eV atom)1, whilst that with out-
of-phase chains has an energy of 0.8102 eV atom)1.

Monte Carlo simulations of one T–O–T layer

Having modelled the tetrahedral and octahedral sheets
independently, we next modelled a whole T–O–T layer.
The model for this includes all of the T–T, O–O and
T–O exchange interactions in Tables 2 and 3. We
simulated one layer from a 12 · 12 · 1 supercell of
phengite (1152 T sites, 576 O sites).

From the output of the first run on phengite (Fig. 8)
we made two observations. Firstly, Fig. 8 suggests that
long-range order does not occur in a system with the
phengite composition. Instead, Mg–Mg nearest-neigh-
bour pairs form in the octahedral sheet, and the Al at-
oms in the tetrahedral sheet line up in Ja positions with
respect to these pairs, forming a group of two Mg and

two Al atoms. Figure 8 shows that the Mg atoms can
line up in two ways – one such that an imaginary bond
drawn between the two atoms in a pair would point
vertically on the Figure, and the other such that it would
point at an angle of approximately 120� to the vertical.
These groups of Al and Mg line up with respect to one
another, but it is not possible for them to occur across
the whole unit cell for this composition.

Secondly, we observed from Fig. 8 that it is possible
to define a new, smaller unit cell for the case of a per-
fectly ordered structure (i.e. one containing sufficient Mg
and [4]Al atoms to produce long-range order). Therefore,
we redefined the unit cell in terms of this structure (see
Fig. 9), thereby decreasing the number of T sites to 24
and the number of O sites to 12. The new supercell was
then taken to be a 4 · 8 · 1 multiple of this cell (768
T sites, 384 O sites).

These two observations led us to perform simulations
on the system with a composition which should allow
full order to occur, i.e. with 1/3 Mg and 2/3 Al on the O
sites, and 1/6 Al and 5/6 Si on the T sites. This is not a
mica end-member composition, but it can exist in a di-
octahedral mica if the difference in total layer charge
from phengite ()2/3e) is accommodated by substitution
of M2+ for K+ in the interlayer region.

Monte Carlo simulation of layer
with long-range-ordered composition

A heating run was performed with the system being set
up in the structure shown in Fig. 10. The resulting
energy and heat capacity data are given in Fig. 11. Also
shown are the data from a cooling run, which show the

Fig. 8 Typical MC simulation output at low T for a whole phengite
T–O–T layer cooling simulation, viewed down the c axis. Only the Al,
Si and Mg atoms are shown, and of these, the [4]Al and [6]Mg are
highlighted for contrast. A and B show the two ways of lining up the
ordering units of 2 [6]Mg atoms and 2 [4]Al atoms

Fig. 9 Phengite T–O–T layer viewed down the c axis showing the
relationship between old unit cell (rectangle) and new, smaller unit cell
based on predicted ordering pattern (parallelogram). Only the Al, Si
and Mg atoms are shown, and the highlighted atoms are [6]Mg (larger
spheres) and [4]Al (smaller spheres)
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same trend, apart from the problem of equilibration at
lower temperature.

According to the two different orientations (A and B)
of the Mg atoms in Fig. 8, we defined six order pa-
rameters fQi; i ¼ 1; . . . ; 6g, corresponding to each of the
six possible ordered states (there are six because for each
orientation, there are three possible arrangements with
respect to the unit cell).

The order parameters thus defined were linearly de-
pendent, in that the six order parameters summed to
zero, and hence only five of them need be declared, since
the sixth can be inferred. These order parameters thus
transform between each other forming a five-dimen-
sional representation of the 3/m point group. However,
the representation they form is not irreducible in the

group-theoretical sense and thus they are not order pa-
rameters in the Landau sense (they are not symmetry-
adapted). Therefore we decomposed the Qi into order
parameters fgi; i ¼ 1; . . . ; 3g, corresponding to the irre-
ducible representations A¢, E¢ and E¢¢ of the 3/m
symmetry group. The first representation is one-dimen-
sional, the latter two are two-dimensional, with real and
imaginary components labelled (1) and (2). The trans-
formation from one set of order parameters to the other
is given by

g1
gð1Þ2

gð2Þ2

gð1Þ3

gð2Þ3

2

6666664

3

7777775
¼

1 1 1 0 0

0 3
2 0 0 3

2ffiffiffi
3
p ffiffi

3
p

2 0
ffiffiffi
3
p ffiffi

3
p

2

�1 1
2 �1 0 � 3

2

0 �
ffiffi
3
p

2 �
ffiffi
3
p

2 �
ffiffiffi
3
p

�
ffiffi
3
p

2

2

6666664

3

7777775

Q1

Q2

Q3

Q4

Q5

2

666664

3

777775
:

ð12Þ
The same transformation law may also be used on the
susceptibilities.

The order parameter data were transformed in the
manner described above, along with data for the sus-
ceptibility. The results for the order parameters and the
inverse susceptibility are given in Fig. 12 and, from
these, we can observe that the order–disorder phase
transition occurs at approximately 1900 K. Order pa-
rameter and inverse susceptibility data are not shown for
the cooling run, but long-range order is achieved on
cooling (with the same problem of equilibration at low
T ). The form of the order parameter as a function of
temperature is fairly similar to that obtained for mus-
covite, to which a 2-D Ising model was found to apply
(with a critical exponent b of 1/8). We did not perform a
detailed analysis of critical exponents, but a brief anal-
ysis of the data suggested a value for b of between 0.16
and 0.28, which is nearer the 2-D Ising model value than
the second-order Landau model value of b = 1/2.

We investigated the presence of coupling between
order parameters by plotting the squared g values
against each other (we used the squared values because

Fig. 10 Configuration of a long-range-ordered T–O–T layer viewed
down the c axis. This layer has a necessarily different composition
from that of phengite

Fig. 11 Energy and heat ca-
pacity data for simulations
(heating and cooling) using the
new unit cell with the long-
range-ordering composition.
The problem of equilibration at
low T is illustrated in the energy
data by the different behaviour
of the heating and cooling sim-
ulations
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of the complex character of g2 and g3). This is illustrated
in Fig. 13, which shows that g1 and g2 are linearly
coupled, whilst g3 is the fundamental order parameter,
since it is quadratically coupled with the other two
order parameters. Hence, free energy expression for the
system would have the following form (neglecting
constants):

F ¼ g21 þ g22 þ g23 þ g1g
2
3 þ g2g

2
3 þ g1g2 ;

whence it is clear that if g3 changes, the fourth and fifth
terms also change value.

Although long-range order occurs in the system with
this composition, it is instructive to quantify the degree
of short-range order, as this provides a framework
within which to compare this composition with the
phengite composition. The short-range order may be
quantified by counting the number of various types of
atomic interactions, as a function of temperature. Im-
portant interactions in the system are JMg�Mg

1;O�O and
JAl�Mg
a;T�O , since these determine the configurations of the
groups of two Al and two Mg atoms which are char-
acteristic of the ordering scheme. Figure 14 shows these
data, normalized such that perfect short-range (and
therefore long-range) order corresponds to a value of
unity, and complete disorder corresponds to a value of

zero, although it is possible that there will be values
outside this range. From Fig. 14 it can be seen that the
short-range order in the system begins to decrease just
below Tc.

Monte Carlo simulation of layer with phengite
composition

Having determined the existence of long-range order in
the T–O–T system described above, we returned to the
whole-layer simulation of the phengite composition. We
expected the ordering to be related to that in the long-
range-ordered system and thus we converted the system
to a smaller unit cell in a similar fashion. We were also
able, therefore, to use the same order parameters, and
the same transformations of the order parameters and
susceptibilities.

It was not possible to perform heating and cooling
runs in the usual manner on the phengite composition,
since the long-range-ordered structure (on which the
order parameters are based) has a different composition
from phengite. Instead, we used an additional adapta-
tion of the Ossia code, which enables the simulation of
partial order, by starting the system in the perfectly or-
dered structure and randomly changing atoms of one
species to those of another, until the desired overall
composition (phengite) is achieved. Because of this, we
do not expect the order parameters to approach unity at
low temperature.

Fig. 12 Order parameter data
and inverse susceptibility data
(scaled on either side of the
phase transition) for the long-
range-ordering composition

Fig. 13 Plots illustrating coupling between order parameters.
Ideal linear and quadratic coupling relationships are shown on each
graph
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A typical output from a cooling simulation on the
new unit cell is shown in Fig. 15. As expected, it shows
the same features as Fig. 8.

We plot the energy and heat capacity of the system in
Fig. 16. The form of the curves is different from that in
Fig. 11 – there is no sharp feature in the heat-capacity
profile, due to the lack of long-range order. Figure 17
shows the order parameter and susceptibility data. These
data show that the phase transition in phengite occurs at
approximately 1400 K. Again, this is a dilution effect;
phengite has a more dilute Al:Si ratio than the long-
range-ordered composition, and hence Tc is lower.

As expected, the order parameter does not approach
unity in the system because of the lack of long-range order
– the system attempts to create the long-range-ordered
structure, but is only able to form short-range-ordered
domains, often in more than one of the six possible con-
figurations in Fig. 18. There are regions which are free
from [4]Al and [6]Mg as a result.

A plot similar to that in Fig. 14 for phengite is shown
in Fig. 19. As in Fig. 14, the short-range order begins to
decrease just below Tc.

Concluding remarks

It is not straightforward to compare our results with
X-ray and neutron diffraction experiments, since the
majority of our findings indicate short-range order,
whilst these techniques are chiefly probes of long-range
order. In contrast, 29Si MAS–NMR experiments are a
good method of probing short-range order in the tetra-
hedral sheets, and have been performed on a variety of
natural and synthetic 2:1 phyllosilicates (Lipsicas et al.
1984; Herrero et al. 1985, 1987; Sanz 1988; Circone et al.
1991). In one synthetic sample with xAl ¼ 0.12 (i.e.

roughly that of phengite), the spectra indicated 39%
Si–2Si1Al, 61% Si–3Si in the tetrahedral sheet. In a
tetrahedral configuration such as that shown in Fig. 6,
the proportions are approximately 42% Si–2Si1Al, 58%
Si–3Si, which is in reasonable agreement with the
experimental data. However, if one considers the rather
different tetrahedral configuration in Fig. 15b and d,
almost the same proportions are obtained. This suggests,
therefore, that 29Si MAS–NMR analysis to investigate
tetrahedral order in phengite would not be conclusive.

There is some weak evidence for low degrees of oc-
tahedral cation ordering in phengite 3T and 2M1 poly-
types (Pavese et al. 1997, 2000, 2001). However, in their
latest paper these authors themselves present their re-
sults rather cautiously, pointing out that they might also
be a consequence of structural defects such as stacking
faults. Nonetheless, our computational results indicate
moderate sized (�25–50 Å) domains of cation order
within the octahedral sheets, and the neutron diffraction

Fig. 14 Plot of JMg�Mg
1;O�O and JAl�Mg

a;T�O , indicating short-range order, for
the long-range-ordering composition. The approximate value of Tc is
marked by a vertical line

Fig. 15a Typical MC simulation output at low T for simulation of
phengite, using the new unit cell. [6]Mg (larger spheres) and [4]Al
(smaller spheres) highlighted. b–d show the T, O, T sheets in a
separately, for clarity
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results of Pavese and coworkers may be a reflection of
such medium-range order. One might anticipate that any
kinetic hindrance to the development of long-range or-
der in natural samples would modify the actual mea-
sured values of LRO in diffraction experiments.

In any case, our simulations have provided an insight
into what is clearly a complicated mineral system. We

have used the T–O interactions computed in this work in
conjunction with the T–T and O–O interactions deter-
mined for similar minerals, to suggest the presence of
short-range order in phengite. The system attempts to
avoid as many Al–Al interactions as possible being
formedover nearest-neighbourT–Tdistances, by creating
a dispersed arrangement of Al atoms, which is easily

Fig. 16 Energy and heat ca-
pacity data for a simulation of
phengite, using the new unit cell

Fig. 17 Order parameter data
and inverse susceptibility data
(scaled on either side of the
phase transition) for phengite

Fig. 18 The six possible ordered configurations in the new unit cell.
a–c are equivalent, and d–f are equivalent, the difference between
equivalent configurations being simply the choice of unit-cell origin

Fig. 19 Plot of JMg�Mg
1;O�O and JAl�Mg

a;T�O , indicating short–range order, for
phengite. The approximate value of Tc is marked by a vertical line
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achieved due to the low Al:Si ratio. Nearest-neighbour
T–O Al–Al linkages are avoided by creating Al–Mg
linkages between the tetrahedral and octahedral sheets. It
is interesting to note, however, that in the octahedral
sheets, the system could decrease the number of Al–Al
nearest-neighbour linkages by distributing the Mg atoms
over non-nearest-neighbour distances, but this does not
happen. From this information, then, it appears that the
dominant interactions controlling ordering in phengite
are the nearest-neighbour T–T and nearest-neighbour T–
O interactions. We have shown that modelling the system
with the T–O interactions gives different results from
modelling the T and O systems independently.

Finally, we have shown analogous results for a mica
composition which orders perfectly, although this is not
an end-member composition, in order to illustrate the
different thermodynamic behaviour between systems
with short- and long-range order.
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