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INTRODUCTION

The rhombohedral oxide solid solution between ilmenite
(FeTiO3) and hematite (Fe2O3) is an important system in both
petrology and paleomagnetism. Intermediate members of the
solid solution are strongly magnetic, and contribute significantly
to the paleomagnetic record. The magnetic properties of this
material are of particular interest due to its ability to acquire
self-reversed thermoremanent magnetization (Hoffman 1992;
Nord and Lawson 1989, 1992). Together with the spinel ox-
ides magnetite (Fe3O4) and ulvöspinel (Fe2TiO4), the FeTiO3-
Fe2O3 solid solution forms the Fe-Ti oxide geothermometer,
whereby the composition of coexisting rhombohedral and spinel
oxides can be used to determine the temperature and oxygen
fugacity at which a rock was equilibrated (Anderson and
Lindsley 1988).

The thermodynamic and magnetic properties of this solid
solution are dominated by a high-temperature phase transition
at the FeTiO3-rich end, which involves the partitioning of Fe
and Ti between alternating (001) layers of the structure. At high
temperatures the symmetry is R3–c, and Fe and Ti are distrib-
uted randomly over all layers. Below the critical ordering tem-

perature, Tc, Fe and Ti order onto alternating Fe-rich and Ti-
rich layers, reducing the symmetry to R3

–
. The existence of this

transition was first demonstrated using measurements of satu-
ration magnetization on quenched material (Ishikawa 1958,
1962; Ishikawa and Akimoto 1957; Ishikawa and Syono 1963).
It is not possible to quench-in completely the high-tempera-
ture disordered state in material containing more than 60%
FeTiO3, preventing this technique being used in the region of
temperature-composition space where cation ordering is of
greatest significance (Brown et al. 1993). The problems asso-
ciated with quenching can be overcome by determining the
cation distribution directly using in-situ diffraction methods.
An in-situ study of the R3– to R3–c phase transition using time-
of-flight neutron powder diffraction (Harrison et al. 2000) con-
strains the equilibrium behavior over the range 400–1350 °C
and 70–100% FeTiO3. These data allow a thorough re-exami-
nation of the thermodynamic properties of this system.

The aims of the thermodynamic analysis are (1) to predict
the equilibrium cation distribution for a given temperature and
composition (required for the interpretation of magnetic prop-
erties); (2) to calculate the equilibrium phase diagram (essen-
tial for understanding the magnetic and microstructural
development of metamorphic ilmenite-hematites); (3) to de-
termine accurate values for the enthalpy and entropy of the
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The thermodynamics of cation ordering in the ilmenite-hematite solid solution  (FeTiO3)x(Fe2O3)1–x

were re-examined in view of a recent in-situ neutron diffraction study of the R3
–

 to R3
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c phase transi-
tion. A macroscopic thermodynamic model is developed, in which the excess enthalpy of ordering is
described by a fourth-order polynomial function of the long-range order parameter, Q, and the ex-
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transition from second-order (x < 0.87) to first-order (x > 0.87). Monte Carlo simulations confirm
that the excess enthalpy is well described by a fourth-order polynomial, and demonstrate that the
reduction in configurational entropy due to short-range ordering can be described by simply scaling
the point entropy. This allows the enthalpy coefficients in the macroscopic model to be corrected for
the effects of short-range ordering, yielding a revised estimate of x = 0.92 for the position of the
tricritical point.

Monte Carlo simulations are used to study both ordering and exsolution in the solid solution,
allowing the paramagnetic portion of the equilibrium phase diagram to be derived. The changing
character of the phase transition is reproduced successfully by treating Fe2+-Ti and Fe3+-Ti interac-
tions separately in the simulations. Intralayer Fe2+-Ti interactions are negative (i.e., ordering of Fe2+

and Ti within the 001 layers is favored) whereas Fe3+-Ti intralayer interactions are positive (i.e.,
separation of Fe3+ and Ti is favored). The λ-line for the R3

–
 to R3

–
c phase transition intersects the low-

temperature miscibility gap at a tricritical point near x = 0.6 and T = 800 °C, in reasonable agreement
with previous thermodynamic models of the solid solution.
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solid solution (an essential component of the Fe-Ti oxide
geothermometer); (4) to determine the extent of short-range
cation ordering (which has implications for both the magnetic
and thermodynamic properties); and (5) to determine the struc-
ture of material which has undergone simultaneous cation or-
dering and compositional unmixing (which has possible
implications for the occurrence of self-reversed thermorema-
nent magnetization in volcanic ilmenite-hematites).

These aims cannot all be achieved using a single approach.
Applications in petrology require a closed-form thermodynamic
model, which can reproduce the enthalpy and entropy of the
solid solution as accurately as possible for a given set of condi-
tions. A macroscopic model based on the Bragg-Williams ap-
proximation is commonly used (Ghiorso 1990, 1997; Ghiorso
and Sack 1991; Holland and Powell 1996a, 1996b). The ad-
vantage of this approach is its speed and simplicity of applica-
tion. Disadvantages are that it offers no insight into the origins
of the phase transition, it does not account for spatial or tem-
poral fluctuations in the degree of order or composition, and it
incorrectly calculates the configurational entropy of the sys-
tem when there is strong correlation between nearest-neighbor
cation occupancies (short-range order). Accounting for these
effects requires an atomistic approach, such as the cluster varia-
tion method (CVM, Burton 1984, 1985, 1991; Vinograd and
Putnis 1999) or the Monte Carlo method (e.g., Myers et al.
1998). These approaches provide a more realistic thermody-
namic description of the solid solution and can yield signifi-
cant insight into the transition behavior at an atomistic level.

Here we take a combined approach to the problem. First, a
simple macroscopic model for the equilibrium cation distribu-
tion is used to assess how the thermodynamic character of the
phase transition changes as a function of composition, and to
predict the equilibrium cation distribution as a function of tem-
perature for those compositions that have not been studied us-
ing neutron diffraction. Second, the Monte Carlo method is
used to simulate ordering and exsolution in the solid solution.
Candidate interaction parameters for nearest-neighbor and next-
nearest-neighbor cation-cation exchange are derived by fitting
to the experimental data, the equilibrium phase diagram is de-
rived, and the configurational entropy is determined as a func-
tion of composition and degree of order via thermodynamic
integration. Based on these results, the macroscopic model is
modified to account for the reduction in configurational en-
tropy due to short-range ordering.

CRYSTAL STRUCTURE

End-member FeTiO3 adopts an ordered structure with space
group R3

–
. The structure can be described in terms of a dis-

torted hexagonal-close-packed arrangement of oxygen anions,
with cations occupying 2/3 of the octahedral interstices to form
alternating (001) layers of Fe2+ and Ti cations. The alternating
layers are labelled A and B. Convention dictates that Fe orders
onto the A-layers and Ti onto the B-layers. End-member Fe2O3

adopts a similar structure with space group R3
–

c. In this case,
the A- and B-layers are both occupied by Fe3+ and are sym-
metrically equivalent (related by the c-glide plane).

The cation arrangement within one layer of the ordered
FeTiO3 structure (Fig. 1a) was drawn without the oxygen

sublattice, and bonds were drawn to represent the nearest-neigh-
bor cation-cation distances. The cations form hexagonal rings
parallel to (001). The hexagonal rings are puckered so that ad-
jacent cations are displaced slightly up and down the [001] axis
(Fig. 1b). In a perspective view of the nearest-neighbor cation-
cation relationships (Fig. 1c), the oxygen coordination octahe-
dra share faces across the nearest-neighbor interlayer join (A-B)
and share edges across the nearest-neighbor intralayer joins
(A-A and B-B).

The solid solution between FeTiO3 and Fe2O3 is formed by
substituting 2 Fe3+ cations for one Fe2+ and one Ti4+ cation. It is
normally assumed that Fe3+ enters the A- and B-layers in equal
amounts (Brown et al. 1993). In the fully ordered case, this
produces an A-layer which is occupied by a mixture of Fe2+

and Fe3+, and a B-layer which is occupied by a mixture of Ti
and Fe3+. Because the occupancies of the A- and B-layers are
different, the symmetry of the ordered solid solution is R3

–
, as

in end-member FeTiO3. With increasing temperature for a given
Ti-content (or with decreasing Ti-content for a given tempera-
ture), the degree of long-range cation order decreases. At the
critical temperature, Tc, the cation occupancy on each layer
becomes equal, and there is a transition to the disordered phase
with space group R3

–
c.

Below 650 °C, the thermodynamic properties of the solid
solution are complicated by magnetic ordering at the Fe2O3-
rich end (Ishikawa and Akimoto 1957). The free energy changes
associated with magnetic ordering have a large effect on the
phase diagram at temperatures below 500 °C (Burton 1985;
Ghiorso 1997). This study neglects the effects of magnetic or-
dering, and therefore restricts the thermodynamic analysis to
temperatures above 500 °C, where the effect of magnetic or-
dering on the phase diagram is known to be small. The main
aim of this study is to derive a thermodynamic description of
cation ordering in FeTiO3-rich material (containing between
60% and 100% FeTiO3). Over this range in composition, mag-
netic ordering occurs close to or below room temperature, and
therefore has a negligible effect on the R3– to R3–c transition. An
extension of the analysis to include the effects of magnetic or-
dering will be examined. We also restrict the calculations to
zero pressure so that we can compare the thermodynamic mod-
els directly with the results of neutron diffraction experiments
(which were performed under vacuum). Because it is observed
that the spontaneous volume strain due to the phase transition
is negligible, the effect of pressure on the cation ordering phase
transition will be small (Hazen and Navrotsky 1996). It is ex-
pected, therefore, that the thermodynamic model will also be
valid at finite pressure.

Macroscopic model for the R3– to R3–c transition

The excess free energy of ordering is described in terms of
a long-range order parameter:

Q
X X

X X
=

−( )
+( )

Ti
B

Ti
A

Ti
B

Ti
A

(1)

where Xj
i  is the fraction of j-sites occupied by i-cations. In the

fully disordered state (with Fe and Ti statistically distributed
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between the A- and B-layers), Q = 0 and Q = 1 in the fully
ordered state (with the A-layer fully occupied by Fe and all
available Ti on the B-layer). Negative values of Q describe the
twin-related ordered state with Fe on the B-layer and Ti on the
A-layer (Nord and Lawson 1989, 1992).

In end-member FeTiO3, the cation distribution is fully de-
fined by Q. In the solid solution, however, there is an addi-
tional degree of freedom because Fe is present as both Fe3+ and
Fe2+. Because the equilibrium distribution of Fe3+ and Fe2+ is
difficult to determine experimentally, it is necessary to make
some assumption about the site preference of these cations. It
is commonly assumed that Fe3+ is distributed equally over the
A- and B-layers, because this scheme leads to the minimiza-
tion of energetically unfavorable interlayer Ti-Ti pairs (Ghiorso
1990, 1997; Brown et al. 1993). With this assumption, the cat-
ion distribution is fully defined in terms of Q and x, where x is
the mole fraction of FeTiO3 (0 ≤ x ≤ 1). The equations relating
Xj

i to Q and x are in Table 1.
The configurational entropy of the solid solution is calcu-

lated assuming that random mixing of cations occurs on the A-
and B-layers, and no correlation exists between nearest-neigh-
bor interlayer pairs. This is referred to as the “point entropy,”
because the A- and B-layers are treated as isolated clusters of
single cation sites:

S X Xi
j

i j
i
j

point R= − ∑
,

ln (2)

The excess entropy change due to long-range cation ordering
is defined relative to the fully disordered state (Q = 0):

∆Spoint = Spoint(Q) – Spoint(0) (3)

The corresponding enthalpy change is formulated as a polyno-
mial-expansion in Q:

∆H aQ
n

bQn= +1
2

1
2 (4)

where a and b are constants for a given composition, and n is
required by symmetry to be an even integer. Combining Equa-
tions 3 and 4 gives the excess free energy of the transition:

∆G = ∆H – T∆Spoint (5)

where T is temperature. If the enthalpy polynomial is truncated
after the first term (i.e., b = 0 in Eq. 4), then the free energy

model reduces to the Bragg-Williams approximation. The equi-
librium degree of long-range order is found by minimizing the
free energy with respect to Q. Differentiating Equation 5 with
respect to Q and setting ∆G/dQ = 0, relates T and Q at equilib-
rium:

T
aQ bQ

x x xQ x xQ

n

= − +
+ − −( )

-1

R ln[ ] ln[ ]
(6)

For a continuous phase transition, the critical temperature, Tc,
is given by the limit of Equation 6 as Q→ 0:

T
a

Rxc = −
2

(7)

Values for a, b, and n are derived by fitting to equilibrium
cation distribution data, see Figure 2a. In ilm80, i.e., x = 0.8,
ilm90 and ilm100, data points determined above 400 °C corre-
spond to equilibrium states of the homogeneous material. The
unusual behavior in ilm70 below 700 °C is caused by the de-
velopment of chemical heterogeneities as this sample is
quenched through, and subsequently annealed below the solvus
(Harrison et al. 2000). The top of the solvus occurs between
600 and 700 °C, and hence for ilm70, only data points mea-
sured above 700 °C correspond to equilibrium states of the
homogeneous material. An estimated error of 0.015 in Q was
assumed for the neutron scattering results, based on the Rietveld
refinements of Harrison et al. (2000) and an estimated 1% er-
ror in the bulk composition of the synthetic samples.

Equation 6 was fitted to the equilibrium ordering data (Q >
0) using a least-squares procedure. Initially, fitting was per-
formed with a, b and n as non-integer variables. In all cases,
the best fit was obtained with a value of n close to 4. Subse-

FIGURE 1. Topology of the ordered
ilmenite structure, showing Fe (dark) and Ti
(light) cation positions only. (a) View of a
single A-cation layer down the [001] axis. (b)
View of the ordered A- and B-cation layers
down the [100] axis. (c) Definition of nearest-
neighbor A-A, B-B, and A-B cation-cation
distances. Distances are quoted for ordered
ilmenite at room temperature (Harrison et al.
2000).

TABLE 1.  Definition of cation distribution variables

Xi
j Assuming Fe3+ Assuming Fe3+ and Fe2+

equally distributed over randomly distributed over
A- and B-layers A- and B-layers

XTi
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2
1x Q−( ) 1

2
1x Q−( )

XFe
A

2+ x x Q− −( )1
2

1
x x xQ

x
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2
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A

3+ 1 –x x xQ x

x

−( ) + −( )
−

1 2
2

XTi
B 1

2
1x Q+( ) 1

2
1x Q+( )

XFe
B

2+ x x Q− +( )1
2

1 x x xQ

x

− +( )
−( )

2
2 2

XFe
B

3+ x xQ x

x

−( ) − −( )
−

1 2
2

1 – x



HARRISON ET AL.: THERMODYNAMICS OF FeTiO3–Fe2O3 SOLID SOLUTION 1697

quent fits constrained n as 4 (solid lines in Fig. 2a). The corre-
sponding values of a and b and their estimated errors are in
Table 2 and plotted in Figure 2b. The uncertainty in the a coef-
ficient translates via Equation 7 to an uncertainty in the transi-
tion temperature. In ilm70, ilm80, and ilm90, this uncertainty
is small because the transition was observed directly using in-
situ measurements (the error in a corresponds to an error of
around 20 °C in Tc, i.e., approximately equal to the tempera-
ture resolution of the measurements). For ilm100 the error in a
is greater because the transition temperature was not reached
in the neutron diffraction experiments.

The character of the transition is determined by the ratio b/
a. For b/a < 1/3, the transition is second-order, for b/a = 1/3 the
transition is tricritical, and for b/a > 1/3 the transition is first-
order. In ilm60, the b-coefficient is zero (within error), and the
transition is second-order (ideal Bragg-Williams behavior).
With increasing Ti-content, the b-coefficient increases smoothly
relative to the a-coefficient, indicating a gradual change in the
character of the transition. A tricritical point with b/a = 1/3 is
reached at x = 0.87, beyond which the transition is predicted to

be first-order. The transition in end-member FeTiO3 is appar-
ently strongly first-order. Figure 2a shows the upper limit of
metastability for the first-order transition in ilm100.

The values of a and b in end-member FeTiO3 lie signifi-
cantly off the trend defined by the other four compositions.
This may be an artefact due to the more limited range in Q
used to fit the coefficients, or may indicate that the approxima-
tion used to calculate the configurational entropy (Eq. 2) be-
comes invalid close to the end-member. Structural evidence
suggests that short-range ordering of Fe and Ti within the R3–c
phase becomes increasingly important at compositions close
to FeTiO3, where the Fe:Ti ratio on the A- and B-layers ap-
proaches 1:1 (Harrison et al. 2000). Short-range ordering leads
to a reduction of the configurational entropy relative to the point
entropy. With the corrected coefficients (see later section), the
tricritical point is predicted to occur at x = 0.92, as shown by
the dashed boundary in Figure 2b. The discrepancy between
coefficients in the solid solution and the end-member is less
pronounced after correction.

The second-order transition observed in compositions close
to x = 0.6 is consistent with previous experimental studies
(Ishikawa 1958). It is also consistent with the limited experi-
mental observations of exsolution in this system, which sug-
gest that the λ-line for the R3

–
 to R3

–
c transition intersects the

low-temperature miscibility gap at a tricritical point around x
= 0.5–0.6 and T = 700–800 °C. Burton (1985) calculated a sec-
ond tricritical point at the intersection of the paramagnetic to
ferrimagnetic transition and the low-temperature miscibility gap
around x = 0.25 and T = 525 °C. The predicted third tricritical
point lies close to x = 0.92 and T = 1340 °C (Fig. 2b). The

FIGURE 2. (a) Long-range order parameter, Q, as a function of temperature (K). Solid symbols show values of Q determined using in-situ
neutron diffraction (Harrison et al. 2000). Open symbols show the quench-magnetization results of Brown et al. (1993). Solid lines are least-
squares fits to the data using the macroscopic thermodynamic model (Eq. 6). The dashed line indicates the discontinuity in Q for the first-order
transition in ilm100 (corresponding to the upper limit of metastability). (b) Variation in the enthalpy coefficients a and b as a function of
composition (see Eq. 4). Solid symbols are values determined assuming full configurational entropy (Eq. 5), open symbols are values determined
after correcting the entropy for the effects of short-range order (Eq. 12). The dashed line at x = 0.92 marks the point where b/a = 1/3. Compositions
to the left of this line undergo a second-order phase transition, compositions to the right undergo a first-order transition.

TABLE 2.  Coefficients of the macroscopic model

Sample Uncorrected* Corrected†
a (kJ/mol) b (kJ/mol) a (kJ/mol) b (kJ/mol) f

ilm60 –11.2(2) –0.3(5) –6.6(2) 0(0) 0.832
ilm70 –14.8(2) –2.7(3) –9.7(2) –0.4(3) 0.847
ilm80 –19.2(2) –4.9(4) –13.9(2) –1.6(4) 0.862
ilm90 –23.9(3) –8.6(5) –19.0(3) –4.9(5) 0.877
ilm100 –22.4(6) –21.2(6) –18.9(6) –15.5(6) 0.8
* Coefficients determined using uncorrected configurational entropy.
† Coefficients determined using corrected configurational entropy.
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phase rule requires, therefore, that a miscibility gap develops
at x > 0.92. Given the proximity to the melting point of end-
member FeTiO3 (1367 °C), the extent of this miscibility gap is
expected to be limited.

The transition behavior in FeTiO3 is comparable to that ob-
served in the analogous oxide NiTiO3 (Boysen et al. 1995). This
material undergoes an abrupt (but apparently continuous) phase
transition at Tc = 1560 K. This temperature coincides precisely
with the equilibrium transition temperature predicted by the
macroscopic model for the first-order transition in FeTiO3.

Monte Carlo simulation of the R3– to R3–c transition

The above macroscopic model illustrates the changing ther-
modynamic character of the R3

–
 to R3

–
c transition, and provides

a simple means of interpolating cation distribution data to tem-
peratures and compositions which have not yet been investi-
gated using in-situ neutron diffraction. However, the model is
not rigorous because the configurational entropy is inadequately
described (Eq. 2). Monte Carlo simulation provides a flexible
and intuitive means of modelling the thermodynamics of com-
plex systems, taking proper account of both long- and short-
range ordering effects (Ross 1991).

Computational methods

The first step in the Monte Carlo simulation is to generate a
supercell of cation sites with the topology of the FeTiO3 struc-
ture (see Fig. 1). The occupancy of each cation site can be de-
fined as either Ti, Fe2+, or Fe3+, with the relative numbers of
each cation type determined by the bulk composition. The in-
ternal energy of the supercell for a given cation configuration
is calculated in terms of pairwise interaction energies, Jq

p, where
p refers to the type of cation-cation pair (1 = Fe2+-Ti; 2 = Fe3+-
Ti; 3 = Fe2+-Fe3+) and q refers to the type of interaction (1 =
nearest-neighbor interlayer interaction, 2 = nearest-neighbor
intralayer interaction, etc.):

J W W Wp
q

X-Y
q

X- X
q

Y -Y
q= − +( )1

2
(8)

W
q
X–Y, W

q
X–X, and W

q
Y–Y are the energies of formation of X-Y, X-X,

and Y-Y cation pairs. A negative value of Jq
p favors the forma-

tion of X-Y pairs over X-X and Y-Y pairs. A positive value of J
q
p

favors the formation of X-X and Y-Y pairs over X-Y pairs. The
excess energy of a configuration, relative to the end-members
Fe2O3 and Ti2O3, is given by:

E N Jp
q

p
q

p,q

= ∑1
2

(9)

where Nq
p is the number of interactions per supercell for a given

cation pair p and interaction type q (counted using periodic
boundary conditions).

At equilibrium, each configuration of the supercell occurs
with a probability determined by the Boltzmann distribution
exp(–E/kBT) where kB is Boltzmann’s constant. In a Monte Carlo
simulation, the equilibrium thermodynamic properties are de-
termined by averaging over a number of configurations gener-
ated with their correct thermodynamic probability. The supercell
is generated with an arbitrary starting configuration. Pairs of

atoms are chosen at random and their positions are swapped. If
the energy after the swap is lower than before, then the swap is
accepted with a probability of 1. If the energy is greater, then
the swap is accepted with a probability of exp(–∆E/kBT). After
a sufficient number of swaps the system reaches equilibrium,
with configurations generated independently of the starting
configuration. The equilibrium properties (energy, degree of
long- and short-range order, etc.) can then be determined by
averaging over a number of steps until the desired statistical
significance is reached.

We chose a supercell containing a total of 1536 cation sites.
This was sufficiently large to minimize finite-size effects, and
was the maximum size permitted by the computing resources
available (single processor DEC Alpha workstation with 500
MHz). Two different geometries of supercell were chosen to
investigate different types of distribution inhomogeneities in-
troduced by the shape and size of the supercell. The first was a
4 × 4 × 8 supercell (approximately 20 × 20 × 120 Å3 dimen-
sions) and the second was an 8 × 8 × 2 supercell (approxi-
mately 40 × 40 × 30 Å3 dimensions). The two supercells
produced identical results for temperatures and compositions
within the single-phase R3– field. Within the low-temperature
two-phase field, the 4 × 4 × 8 supercell showed a strong ten-
dency to exsolve into Fe2O3-rich and FeTiO3-rich lamellae, with
the boundary between phases parallel to (001). In contrast, the
8 × 8 × 2 supercell showed a reduced tendency to produce large-
scale exsolution features. Exsolution is suppressed in this
supercell because its shortest dimension is perpendicular to the
preferred orientation of the boundary plane between exsolved
phases. In effect, the 4 × 4 × 8 supercell allows one to simulate
systems where exsolution is both thermodynamically and ki-
netically feasible, whereas the 8 × 8 × 2 supercell partly mod-
els systems where exsolution is kinetically hindered.

The free energy for a given temperature, F(T), can be cal-
culated using the Bogoliubov integration scheme (Myers 1998;
Myers et al. 1998; Yeomans 1992). Specifically:

F T TS E T d( ) /= − + ( )
=
∫point λ λ

λ 0

1

(10)

where Spoint is given by Equation 2 with Q = 0 and E(T/λ) refers
to the equilibrium energy calculated at a temperature of T/λ.
The integral in Equation 10 was approximated by varying λ
from 0 to 1 in steps of 0.05, and performing Monte Carlo simu-
lations at each temperature T/λ. The energy for λ = 0 can be
calculated directly from Equation 9 assuming a purely statisti-
cal distribution of cations at infinite temperature. From F(T)
and E(T) one can calculate the configurational entropy S(T) =
[E(T)–F(T)]/T.

Choice of interaction parameters

The number, magnitude, and sign of the interaction param-
eters, Jq

p, determine the overall thermodynamic behavior of the
solid solution. In some cases, e.g., aluminosilicates, values of
J

q
p can been determined by combining NMR and calorimetric

data (e.g., Phillips et al. 1992). Alternatively, values of Jq
p can

be determined from first-principles using empirical-potential
or quantum-mechanical ab-initio calculations (e.g., Thayaparam
et al. 1996; Dove et al. 1996; Becker et al. 1999; Warren et al.
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1999). It is difficult to derive a set of empirical potentials for
the FeTiO3-Fe2O3 solid solution due to problems associated with
modelling a system containing mixtures of Fe2+ and Fe3+. At-
tempts to determine interaction energies using ab-initio calcu-
lations were hampered by the difficulties in separating chemical
and magnetic contributions to the total energy. Given these dif-
ficulties, we chose to derive a set of interaction parameters based
on empirical observations. The signs of the parameters were
determined using the general guidelines described by Burton
and Kikuchi (1984). The magnitudes of the parameters were
then refined by fitting to neutron diffraction data of Harrison
et al. (2000).

The minimum set of interaction parameters required to re-
produce the phase diagram topology discussed above is shown
in Figure 3a. The strongest interactions are J1

p (cation-cation
separation approximately 2.94 Å) and J2

p (cation-cation sepa-
ration approximately 3.0 Å), which describe the nearest-neigh-
bor inter- and intralayer interactions, respectively. The
next-nearest-neighbor interactions are J3

p,, J4
p, and J5

p, which
describe interlayer interactions with cation-cation separations
between 3.42 and 3.78 Å. For simplicity we assume that J3

p, =
J4

p = J5
p. These interactions are collectively described by J3

p, in
the following.

The general guidelines (Burton and Kikuchi 1984) state that
when the sum of interlayer interactions and the sum of intralayer
interactions are both negative, the resulting phase transition is
first-order in character. When the sum of interlayer interac-
tions is negative and the sum of intralayer interactions is posi-
tive, the resulting phase transition is second-order. The sign of
J

q
p is defined by Equation 8 and determined by crystal chemi-

cal factors such as the charge and size difference between cat-
ion pairs. In the FeTiO3-Fe2O3 solid solution, J1

p is negative,
because strong electrostatic repulsion across the poorly screened
shared face of the oxygen coordination octahedra favors the
formation of X-Y pairs over X-X and Y-Y pairs. The J2

p, interac-
tion can be either negative or positive, depending on the subtle
balance of charge and size effects. To reproduce the first-order
transition in end-member FeTiO3, J2

1 must be negative (i.e.,
intralayer Fe2+-Ti pairs are favored). This result is expected

because the large difference in charge between Fe2+ and Ti
means that electrostatic repulsion dominates over other effects.
The transition in the solid solution is predominantly second-
order, requiring that J2

2 is positive (i.e., intralayer Fe3+-Ti pairs
are not favored). The sign of J2

3 (intralayer Fe2+-Fe3+ pairs) is
more difficult to define, because the character of the transition
is largely independent of this parameter. Empirical potential
calculations failed to produce accurate quantitative values for
J

q
p. However, the qualitative results strongly suggested that J2

3

was negative, and furthermore, that the absolute values of Jq
3

could be approximated by the relationship J
q
3 = kJ

q
1, where k is

a constant scaling factor. For simplicity, this scheme was
adopted in the fitting procedure described below.

Values for the Fe2+-Ti interaction parameters, J1
1, J2

1, and J3
1

were determined by fitting to the equilibrium ordering data in
end-member FeTiO3. According to the arguments above, J1

1 and
J2

1 were assumed to be negative. A negative value of J3
1 was

then required to stabilize the R3
–

 ilmenite structure relative to
alternative ordering schemes, in which Fe2+ and Ti are ordered
within the A- and B-layers (e.g., Fig. 3b). Fitting was performed
manually by trial and error. The fitted parameters are listed in
Table 3 and the calculated equilibrium ordering curve is in Fig-
ure 4d.

Values for the Fe3+-Ti interaction parameters, J1
2, J2

2, J3
2, and

the scaling constant, k, were determined by fitting simulta-
neously to the equilibrium ordering data in ilm70, ilm80, and
ilm90. Fitting was performed using an automated conjugate
gradient optimization routine. Data points close to Tc were not
used as observables in the fit, because these lie within the or-
der parameter fluctuation regime and require a supercell larger
than that used in this study to be determined with any preci-
sion. The fitted parameters are listed in Table 3 and the calcu-
lated equilibrium ordering curves are shown in Figures 4a to
4c.

Although the experimental data are well described by the
chosen set of interaction parameters, other combinations of J

q
p

may describe the data equally well. The values listed in Table
3 should, therefore, be treated as candidate interaction param-
eters, which may be revised in the future if more specific ex-
perimental or theoretical constraints become available.

Temperature-dependence of long- and short-range order

The results of the Monte Carlo simulations are compared to
the degree of long-range order determined using neutron dif-
fraction in Figure 4. Error bars represent the standard devia-
tion in Q averaged over approximately 10 million Monte Carlo

FIGURE 3. (a) Definition of the interaction parameters Jq
p used in

the Monte Carlo simulations. (b) Hypothetical ordered structure in
end-member FeTiO3. The Fe2+ and Ti cations order onto alternate sites
within the layers, reducing the symmetry to R3. This arrangement may
become stable above Tc for the R3

–
 to R3

–
c transition due to the negative

values of J1
1 and J2

1, which favor nearest-neighbor Ti-Ti avoidance both
between and within the A- and B-layers.

TABLE 3.  Interaction parameters used in the Monte Carlo simula-
tions

Jp
q q

1 2 3
(eV) N.N. N.N. N.N.N.

interlayer intralayer interlayer
1 Fe2+-Ti –0.4167 –0.290 –0.1650

p 2 Fe3+-Ti –0.0954 0.0723 –0.0555
3 Fe2+-Fe3+ –0.0833 –0.0580 –0.0330

Notes: N.N. = nearest-neighbor; N.N.N. = next-nearest-neighbor; Jp
3  =

Jp
4  = Jp

5 .
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steps for ilm80, ilm90 and ilm100, and approximately 300 mil-
lion steps for ilm70. A larger number of steps was required for
ilm70, because this composition involved mixing three cations
in approximately equal proportions. The temperature-depen-
dence of the short-range order parameters, σq, were obtained
from:

Pq
Ti-Ti = XA

TiXB
Ti(1 – σq) for q = 1, 3, 4 and 5 (11)

and

P
q
Ti-Ti = XA

TiXA
Ti + XB

TiXB
Ti (1 – σq) for q = 2 (12)

where Pq
Ti-Ti is the probability of a Ti-Ti pair occurring for a

given interaction type q. When σq = 0, P
q
Ti-Ti is equal to the prod-

uct of the point probabilities of finding Ti on the A- and B-
layers (no short-range order). When σq > 0, P

q
Ti-Ti is lower than

the point probability (i.e., there is a tendency to avoid Ti-Ti
neighbors). When σq < 0, Pq

Ti-Ti is greater than the point prob-
ability (i.e., there is a tendency for Ti to cluster).

All calculations in Figure 4 were performed using the 4 × 4
× 8 supercell, so that the effect of exsolution on the degree of
long-range order could be accounted for. As seen in Figure 2a,
the degree of order in ilm70 deviates significantly from the
macroscopic ordering model at temperatures below 700 °C.
Harrison et al. (2000) suggested that this was caused by the
development of chemical heterogeneities at temperatures be-
low the solvus. This hypothesis is supported by the Monte Carlo

FIGURE 4. Results of the Monte Carlo simulations for (a) ilm70, (b) ilm80, (c) ilm90, and (d) ilm100. Open squares with error bars show the
calculated degree of long-range order, Q, as a function of temperature. Error bars represent the standard deviation in Q during the simulation.
Solid and dashed lines show the temperature-dependence of short-range order parameters σ1 (solid lines), σ2 (short-dashed lines) and σ3 (long-
dashed lines). Closed circles are the results of in-situ neutron diffraction (Harrison et al. 2000). The arrows in (a) and (b) show the temperature
ranges over which exsolution was observed in the Monte Carlo simulation.
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simulations. Exsolution is predicted to occur below 700 °C in
ilm70. Below this temperature, the supercell contains a single
lamella of disordered Fe2O3-rich material within a matrix of
ordered FeTiO3-rich material. Because the disordered phase
contains an equal amount of Ti on the A- and B-layers, the
apparent degree of long-range order is reduced when Equation
1 is averaged over the whole supercell. This reduction in Q on
cooling through the solvus counteracts the expected increase
in Q due to increasing the degree of order in the FeTiO3-rich
phase. Within a small temperature interval between 600 and
700 °C these two effects balance each other, and Q remains
essentially constant as a function of temperature. Ultimately,
however, the composition of the exsolved Fe2O3-rich phase
approaches that of pure Fe2O3, at which point all Ti is on the B-
layer and Q = 1. Excellent agreement between the calculated
and observed degree of long-range order is achieved between
500 and 700 °C in ilm70, even though only data points mea-
sured above 700 °C were used to constrain the values of J

q
p.

A small decrease in Q is predicted in ilm80 below 600 °C
due to exsolution (Fig. 4b). This was not observed in the neu-
tron experiments, however. Harrison et al. (2000) discuss the
possible reasons why exsolution is less pronounced in this
material than in ilm70. Firstly, the temperature of the spinode
is lower than the kinetic closure temperature, which means that
exsolution requires nucleation of the disordered phase, which
in turn requires overcoming the nucleation energy barrier. Sec-
ondly, the density of transition-induced twin domain bound-
aries, which may act as nuclei for the disordered phase, is much
lower in ilm80 than in ilm70 (Nord and Lawson 1989). No
exsolution was observed in ilm90 and ilm100 at the tempera-
tures simulated. The observed and fitted values of Q in both
these samples are in excellent agreement. In ilm90, Q continu-
ously decreases and the amplitude of order parameter fluctua-
tions gradually increases as Tc is approached, suggesting that
the character of the transition is either second-order or tricritical.
In ilm100, Q discontinuously decreases and the amplitude of
order parameter fluctuations suddenly increases above 1325
°C, confirming that the transition is first-order.

The temperature- and composition-dependence of the three
short-range order parameters is complex. Several trends can
be recognized, however, allowing us to make some general
conclusions about the behavior of the solid solution. The larg-
est short-range order parameter is σ1, which describes the ten-
dency to avoid nearest-neighbor interlayer Ti-Ti pairs (Fig. 4).
The value of σ1 increases with decreasing Ti-content, which
reflects the general principle that short-range order replaces
long-range order as the dominant strategy of energy reduction
as a system becomes increasingly dilute (Dove et al. 1996).
This inverse relationship between long- and short-range order
is also responsible for the pronounced peak in σ1 and σ3 at T =
Tc. The next-nearest-neighbor interlayer short-range order pa-
rameter, σ3 (≈σ4 ≈ σ5), shows similar behavior to σ1 (Fig. 4).
The rather dramatic changes in σ1 and σ3 which occur at low
temperatures in Figures 4a and 4b have little effect on the en-
thalpy and entropy of the solid solution, because XA

Ti tends to
zero at high degrees of long-range order, and therefore large
changes in σ1 and σ3 have only a small effect on P1

Ti-Ti and P3
Ti-Ti

(Eq. 11).

The nearest-neighbor intralayer short-range order param-
eter, σ2, shows different behavior to the interlayer parameters
(dotted lines in Fig. 4). In ilm90 and ilm100, σ2 is zero below
Tc but increases with increasing temperature above Tc (Figs. 4c
and 4d). This indicates that a locally ordered configuration such
as that in Figure 3b becomes thermodynamically stable at these
temperatures. One might speculate that the existence of this
ordering scheme contributes to the increasingly first-order char-
acter of the transition close to end-member FeTiO3. In ilm70
and ilm80, σ2 is small and positive above Tc (Ti-Ti avoidance)
but becomes negative at temperatures close to Tc and below the
solvus (Ti-Ti clustering) (Figs. 4a and 4b). The changes in σ2

below the solvus have more thermodynamic significance than
the corresponding changes in σ1 and σ3, because P2

Ti-Ti does not
tend to zero in the limit of full long-range order (Eq. 12).

Determination of the phase diagram

As described earlier, the apparent degree of long-range or-
der is reduced at temperatures and compositions within the
solvus. Exsolution occurs readily in simulations using the 4 ×
4 × 8 supercell, whereas exsolution is suppressed in the 8 × 8 ×
2 supercell. Within the solvus, this leads to an obvious differ-
ence in Q calculated using the alternative supercells. Outside
the solvus, both supercells yield precisely the same values of
Q. This simple comparison allows the position of the solvus to

FIGURE 5. Calculated phase diagram for the Fe2O3-FeTiO3 system.
Triangles on the left limb of the solvus bracket the compositions at
which long-range order was observed to break-down in the Monte Carlo
simulations. Triangles on the right limb of the solvus bracket the
compositions at which a clear difference in the degree of order was
observed in the 4 × 4 × 8 and 8 × 8 × 2 supercells. The position of the
high-temperature tricritical point (x = 0.92) has been calculated using
the modified macroscopic model. The extent of the high-temperature
miscibility gap is drawn schematically. Dashed lines have been drawn
between the melting points of end-member Fe2O3 and FeTiO3.
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be determined (Fig. 5).
The λ-line for the R3

–
 to R3

–
c transition intersects the solvus

at a tricritical point at T = 800 °C and x = 0.6. This agrees quite
well with the position predicted by Ghiorso (1990, 1997) (T =
750 °C, x = 0.55), but differs somewhat from that predicted by
Burton (1984 and 1985) (T = 714 °C, x = 0.5). Experimental
evidence suggests that macroscopic exsolution may not occur
until temperatures below 700 °C (Burton 1982). Due to the
small size of the Monte Carlo simulation cell, it is likely that
the temperature of the tricritical point is overestimated in this
study. The solvus (Fig. 5) defines the temperature at which
compositional clustering occurs in the simulation, and does not
necessarily correspond to the temperature at which exsolution
on a macroscopic scale is thermodynamically stable. Short-
range compositional heterogeneities play a crucial role in de-
termining the magnetic properties of this system, and may also
significantly affect the results of in-situ neutron diffraction
experiments (Harrison et al. 2000). Therefore, Figure 5 pro-
vides a useful determination of the temperature-composition
space where such clustering might occur.

The tricritical point marking the boundary between second-
and first-order regions of the R3– to R3–c transition has been
placed between ilm90 and ilm100, although the precise posi-
tion of this point is difficult to determine using the Monte Carlo
simulations. The macroscopic model predicted a tricritical point
at x = 0.87. After accounting for the reduction in configura-
tional entropy due to short-range ordering, the model predicts
a tricritical point around x = 0.92 (see next section). The latter
value is shown in Figure 5. The extent of the miscibility gap
which develops on the Ti-rich side of the tricritical point is
unknown, and the gap shown in Figure 5 should be regarded as
schematic. For reference, the dotted lines in Figure 5 show a
simple linear interpolation between the melting points of end-
member Fe2O3 and FeTiO3 (1622 and 1367 °C, respectively).

Energy and entropy of the solid solution

Figure 6 illustrates the variation in energy and entropy as a
function of Q for a composition close to ilm80. Above Tc, the
curves were obtained by performing a “constrained-swap” simu-
lation, in which only intralayer and double-layer swaps were
permitted. In this way, Q remains constant during the simula-
tion (fixed by the choice of starting configuration) and the sys-
tem equilibrates with respect to the degree of short-range order.
Only temperatures above Tc were investigated to avoid the for-
mation of domain structures at small values of Q. The curves
are well described by a fourth-order polynomial, as illustrated
by the least-squares fits to the data using Equation 4. The size
of the fourth-order term decreases with increasing tempera-
ture, as expected for pairwise interactions in the high-tempera-
ture limit. Equilibrium energies from an unconstrained Monte
Carlo simulation lie close to the fourth-order polynomial curve
calculated at temperatures close to Tc, providing justification
for the energy model adopted in Part I.

The corresponding variation in entropy, S, as a function of
Q in Figure 6b, was determined using Bogoliubov integration
(Eq. 10). The ideal point entropy, Spoint, was calculated under
the assumption that Fe3+ is equally distributed over the A- and
B-layers (i.e., the macroscopic entropy model). At high degrees

of long-range order, S is larger than Spoint, demonstrating that
this assumption does not provide a good description of the Fe2+-
Fe3+ distribution in the simulation (see inset in Fig. 6b). The
upper solid curve shows the upper limit of point entropy, cal-
culated under the assumption that both Fe2+ and Fe3+ are dis-
tributed randomly over the A- and B-layers (see Table 1). For
temperatures below Tc, S can be described reasonably well by
the relationship S = f Spoint, where f is a constant scaling factor
and Spoint refers now to the upper limit of point entropy. This is
illustrated by the dashed line in Figure 6b, which was obtained
by multiplying the upper solid curve by a factor f = 0.87. Val-
ues of f for other compositions within the R3

–
 stability field

were determined in a similar manner and are listed in Table 2.
The scaling factor, f, performs a similar function to the vari-

able “a” in traditional Landau theory (∆S = 1/2aQ2), in that it
provides an empirical means of accounting for the reduction in
configurational entropy due to short-range ordering (Carpen-
ter and Salje 1994; Harrison and Putnis 1997). The approach
used here provides a better approximation to the configura-
tional entropy at high degrees of long-range order, however.
This is a key factor in determining the thermodynamic charac-
ter of the transition, because the most discriminating changes
in the Q-T curves occur at values of Q between 0.8 and 1, which
is outside the region where the Landau approximation is valid.
Values of f may be determined directly from Monte Carlo simu-
lations or indirectly by fitting to calorimetric or phase equilib-
rium data (Carpenter et al. 1994; Carpenter and Salje 1994;
Salje 1985).

The macroscopic model can now be modified to take ac-
count of the reduction in configurational entropy. The modi-
fied excess free energy is simply:

∆ ∆ ∆G H Tf S= − po int
(13)

where ∆Spoint is the maximum excess point entropy for a given
Q, calculated by substituting the values of Xj

i listed in Table 1
into Equations 2 and 3. Minimizing ∆G with respect to Q, gives
T as a function of Q and x at equilibrium. This function can be
used, as before, to determine values for the enthalpy coeffi-
cients a and b. The values of a and b determined using the
modified model are in Table 2 and shown in Figure 2b.

Energy and entropy calculations were performed as a func-
tion of temperature for several bulk compositions along the
ilmenite-hematite join, allowing the excess energy and entropy
of mixing to be determined (Fig. 7). All excess properties have
been defined relative to Fe2O3 and fully ordered FeTiO3. The
diagram is divided into long-range disordered (R3

–
c), long-range

ordered (R3
–
) and two-phase (R3

–
c + R3

–
) fields. Ideally, the varia-

tion in energy and entropy as a function of composition within
the two-phase field would be a straight line joining the two
phases at the boundary. The curvature of the lines within this
field in Figure 7 is an artifact due to the limited size of the
supercell used in the simulations, which results in a finite en-
ergy contribution from the interface between the exsolved
phases.

A striking feature of the energy of mixing (Fig. 7a) is the
rapid decrease in energy close to the FeTiO3 end-member. The
energy of FeTiO3 appears to lie significantly off the trend de-
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fined by the rest of the solid solution. This is due, in part, to the
first-order nature of the transition in FeTiO3. However, the
magnitude of the stabilization energy of FeTiO3 relative to the
rest of the solid solution may be exaggerated due to the way in
which the interaction parameters were calculated. The interac-
tion parameters for the solid solution were obtained by fitting
to ordering data for three separate bulk compositions simulta-
neously, whereas those for pure FeTiO3 were obtained inde-
pendently. For this reason, there may be an offset between the
energy of the end-member relative to the rest of the solid solu-
tion, and the absolute values in Figure 7a should be treated
with some caution. Qualitatively, however, Figure 7a illustrates
the general features that are required to reproduce the equilib-
rium phase diagram. Note, in particular, the significant changes
in energy of the solid solution which occur within the long-
range disordered field (R3

–
c). Conventional thermodynamic

models calculate the energy of mixing within the disordered
phase using a single temperature-independent regular solution
parameter, and, therefore, do not allow for changes in energy
caused by short range ordering. For compositions close to x =
0.6, the energetic effect of short-range ordering is of the same
order of magnitude as that of long-range ordering, and leads to
a smooth variation in energy across the phase boundaries.

The entropy of mixing is independent of any offset in the
absolute energy of FeTiO3 relative to the rest of the solid solu-
tion, and can, therefore, be compared directly with the ideal
configurational point entropy. The upper limit for complete

disorder is given by Equation 2 with Fe2+, Fe3+ and Ti cations
randomly distributed over all (001) layers. The lower limit for
complete order is given by Equation 2 with Ti fully ordered
onto the B-layers and Fe3+ equally distributed over the A and B
layers. Again, the entropy varies significantly within the R3–c
field due to short-range ordering. For compositions dilute in Ti
(i.e., x < 0.1), the effect is negligible. For compositions be-
tween 0.2 < x < 0.4, however, the entropy is close to the or-
dered limit at low temperatures and only approaches the
disordered limit at temperatures close to the melting point.
Conventional thermodynamic models assume that the entropy
of the disordered phase lies at the upper limit of the shaded
area at all temperatures.

It is possible to account for the entropic effect of short-range
ordering within the long-range ordered phase using a simple
modification to a standard macroscopic thermodynamic model.
At present, no similar approach to the long-range disordered
phase exists. This is a serious shortcoming of current macro-
scopic models. It is well known from studies of alloy systems,
for example, that failure to account for the effects of short-
range ordering produces incorrect phase diagram topologies.
Similar errors in the calculation of phase diagrams in mineral
systems are to be expected. Although the data presented in Fig-
ure 7 could be used to derive activity-composition relations for
specific temperatures, it is more desirable to formulate a mac-
roscopic model which reproduces the behavior for a general
set of conditions and might be applied to other systems with

FIGURE 6. (a) Energy as a function of long-range order for a composition close to ilm80. Open circles show the results of constrained-swap
Monte Carlo simulations, in which Q is held constant by allowing only intralayer and double-layer swaps to occur. Solid lines show least-
squares fits to the energies using a fourth-order polynomial (Eq. 4). Superimposed are the equilibrium energies from an unconstrained Monte
Carlo simulation (filled circles). (b) Entropy as a function of long-range order for a composition close to ilm80. The shaded region shows the
configurational point entropy, bounded by the two models described in Table 1. Superimposed are the equilibrium entropies from an unconstrained
Monte Carlo simulation. Dashed line is a least-squares fit to the Monte Carlo entropies with an equation of the form S = f Spoint, where f is a
constant scaling factor and Spoint is the upper limit of point entropy.
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similar phase diagram topologies. The effects of short- and long-
range magnetic ordering on the phase diagram topology below
500 °C must also be included in any such model.
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