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We present the results of a simulation study of silica glass which addresses the issue of large-
amplitude low energy motions involving reorientations of SiO4 tetrahedra. Using methods developed
for crystalline silicates we find that random networks of linked SiO4 tetrahedra are as flexible as
crystalline phases for infinitesimal displacements. Patches of the networks can also undergo large
sudden distortions involving reorientations of the SiO4 tetrahedra, with little change in energy and an
energy barrier of around 0.06 eV. These may act as tunneling states to provide the mechanisms for the
anomalous low-temperature thermal properties of glasses. [S0031-9007(98)07382-7]

PACS numbers: 61.43.Fs, 63.20.Pw, 63.50.+x, 66.35.+a
e-
7].
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The structure of silica glass is well described as an in
nite random network of SiO4 tetrahedra linked together a
the corners. Evidence comes from diffraction studies [1
reverse Monte Carlo [2] and molecular dynamics simul
tions [3], and model building [4]. Over short length scale
there are similarities between the structures of amorpho
silica and the cristobalite and tridymite crystalline phas
of silica [5], and the quantitative extent of these similaritie
and the associated length scale has recently been dedu
[6]. A description of the vibrational dynamics of silica
glass is less developed [7–10].

In this Letter we address the issue of the excitatio
between 0–5 meV, which will include those believed t
be responsible for two-level tunneling states [11] an
associated with the anomalous thermal behavior at lo
temperatures [12]. We find here, rather surprisingl
that silica glass has the same degree of flexibility
dynamically disordered [13] crystalline phases. We al
find that it is able to undergo large sudden rotation
rearrangements of the structure with little energy co
which may be identified with the tunneling states of [11
Earlier difficulties in clearly pinpointing these states hav
led to some doubt about their existence [14]. In additio
to visualizing these tunneling states we also answer
natural question concerning the extent of the part of gla
structure which flops from one state to another, whethe
involves one atom or tetrahedron, or whether it is spatia
more extended.

Any low energy vibrational modes will necessarily in
volve only minimal distortions of the SiO4 tetrahedra
[15]. Whether an infinite framework of corner-linked
SiO4 tetrahedra can vibrate without the tetrahedra disto
ing is actually a very subtle issue (and for a long tim
it was not certain that such an infinite framework cou
even be constructed). It is conventional to refer to th
vibrational modes in glasses which do not involve disto
tions of the interatomic bonds as “floppy modes” [16], an
if the only forces are those associated with stretching
these bonds, the floppy modes will have zero frequen
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The number of floppy modes is equal to the difference b
tween the degrees of freedom and the constraints [16,1
For silica the number of degrees of freedom equals
number of simple bond constraints [18], so the topo
ogy of silica, whether amorphous or crystalline, is ne
ther floppy nor overconstrained but balanced between
two extremes. Thus one cannot easily predict whether
floppy modes envisaged in [15] can exist.

We have recently obtained new insight into this i
sue by studying the crystalline forms of silica (and oth
framework aluminosilicates) using our “rigid unit mode
(RUM) model [19], in which we treat the SiO4 tetrahe-
dra as rigid units and search for phonon modes that c
propagate without the tetrahedra distorting [20]. We ha
found that symmetry can cause some of the bond c
straints to be degenerate, allowing for a nonzero nu
ber of zero-frequency phonons (“RUMs”). For exampl
b-cristobalite, like most crystalline framework alumino
silicates, has RUMs on planes of wave vectors [13]. F
two phases related by a displacive phase transition th
are fewer RUMs in the phase of lower symmetry. At th
other extreme, high-symmetry zeolites may have one
more RUMs for each wave vector [21]. RUMs are no
always restricted to wave vectors on symmetry points a
can have wave vectors on exotic curved surfaces wit
the Brillouin zone [22]. Since crystalline phases can th
violate the simple bond constraint counting scheme to
greater or lesser extent, it is not possible to predict t
number of floppy modes in glasses from simple constra
counting arguments alone.

Although RUMs are important in crystalline phase
when RUMs occur with wave vectors on surfaces in r
ciprocal space, the relevant fraction of reciprocal spa
is vanishingly small. In crystalline phases one can hu
for RUMs in a systematic manner because symme
gives a guide, but in glasses the lack of translation
symmetry makes any systematic search impractical.
stead we use a different approach, which uses our sp
atom algorithm [20,23] within the formalism of molecula
© 1998 The American Physical Society 3431
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lattice dynamics to calculate the vibrational density o
statesgsvd by diagonalizing the dynamical matrix for
a grid of wave vectors. This method givesgsvd ~ v2

as v ! 0 (the normal Debye result) when there are n
RUMs, andgsvd , constant asv ! 0 when there are
RUMs [24]. We have used atomic configurations o
silica glass obtained from starting configurations of amo
phous silicon formed by the Wooten-Weaire algorithm
[25]. Oxygen atoms were incorporated into the config
uration along each Si—Si bond, and the structure w
relaxed using molecular dynamics simulations, with th
potential of [26] to remove the linear Si—O—Si bonds
a point we return to later. The radial distribution func
tions of our relaxed structures are in excellent agreeme
with experimental data.

The calculatedgsvd for silica glass is compared with
that of b-cristobalite in Fig. 1. The striking result is
the similarity between the two cases forv ! 0, which
suggests thatglass has the same low energy flexibilit
as the crystal. High-precision experimental comparison
of the low energy spectra of glass and crystalline silic
are not common, but this result is consistent with rece
inelastic neutron scattering data [7]. From the mod
eigenvectors we can define the participation ratioP [9]:

P ­
s
P

juj2d2

N
P

juj4
, (1)

where u is the displacement of an atom in a vibration
and the sum is over all atoms. Smaller values ofP

FIG. 1. Vibrational density of statesgsvd, calculated using
our split-atom method [20,23], for silica glass,b-cristobalite,
and the silica glass configuration with a fraction of missin
Si atoms.
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for any mode of vibration indicate a high degree o
localization, whereas values nearer 1 indicate that t
vibration involves all atoms in the sample. For ou
glass configurationP , 0.8 for all v, which implies that
the low-v modes involve many tetrahedra and are no
localized.

In Fig. 1 we compare, for interest, the effect of re
moving a fraction of the Si atoms in order to creat
nonbridging Si—O bonds—this may resemble the bas
topology of tetrahedra in alkali silicates. The result is th
formation of realv , 0 modes, which are seen as the
peak ingsvd at v ­ 0. This peak is formed out of low
energy modes ingsvd for the fully linked silica glass, and
by increasing the number of Si vacancies we find that th
peak atv ­ 0 increases and opens up the low-v gap in
gsvd. The newv , 0 modes have values ofP ranging
uniformly from 0 to ,0.8. This increase in the number
of RUMs is consistent with the observation of increase
inelastic neutron scattering intensity found in alkali disili
cate glasses over silica glass [7].

The existence of low-v modes indicates a flexibility
against infinitesimal atomic displacements, but the pictu
that has been proposed to explain the anomalous therm
data at low temperatures [12] suggests the existence
large-amplitude reorientational motions of SiO4 tetrahedra
[11]. Figure 2 shows the time dependence of the coord
natesx, y, z of one atom that shows a large jump motion
together with other similar events we have identified i
other simulation runs for comparison. In Fig. 3 we show
snapshot images of the reorientations of the associa
group of tetrahedra. For this jump motion the participa
tion ratio indicates that the number of tetrahedra involve
in this event is around 30. The largest atomic displac
ment in these events is typically 0.8 Å. See Ref. [27].

FIG. 2. Time dependence of atomic coordinatesx, y, z (in
orthogonal Å units) for an atom undergoing a large jum
involving a movement of about 0.5 Å (top), and an atom i
a different simulation run that jumps from one site to anothe
and subsequently jumps back again (bottom).
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FIG. 3. Snapshot images of the tetrahedra participating in t
jump event indicated in Fig. 2. The figure shows superimpos
snapshots of the local configuration captured before and a
the jump event in order to highlight the large-amplitud
reorientational motions.

We consider thatthe jump event shown in Figs. 2 and
3 is a candidate event for the jump motions envisag
in the two-level tunneling excitations. However, it is not
possible to detect an energy barrier in the simulations
finite temperature. Figure 4 shows the potential energy
the (constant total energy) simulation through this jum
event, and any energy changes are clearly substanti
lower that the normal energy fluctuations. To extra
values of the energy barrier and change in energy as
system flips from one state to another we have relax
the structures either side of the jump event and halfw
through the jump event (i.e., the transition state) using t
molecular dynamics code at 0 K. For the configuration
the transition state we pinned the position of the atom th
moves the most in order to prevent the state from relaxi
to either of the states either side of the transition sta

FIG. 4. Time dependence of the potential energy of th
simulation sample (with its average value subtracted) throu
the jump event shown in Figs. 2 and 3.
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This procedure gave an energy barrier of0.06 6 0.02 eV
(for about 30 tetrahedra; see above), and the chan
in energy of the sample on flipping from one state t
another is less than 0.01 eV. The uncertainties arise fro
numerical errors in the simulations that are hard to contr
to greater precision because of their small size relati
to the total system energy. Our estimates of the size
the energy barrier and the energy difference are within t
ranges proposed by [11]. Our simulations show that jum
events in a sample of 216 tetrahedra occur at intervals
around 20 ps.

What is clear is that the system can remain in one sta
for times corresponding to many periods of oscillation o
SiO4 tetrahedra before jumping to another state, whic
means that the system has a local free energy minimu
in this state, without being able to oscillate back an
forth into the second state. This means that the jump c
occur only when all of the tetrahedra associated with th
jump are aligned in a particular way. In effect, for mos
configurations of the tetrahedra the energy barrier again
the system jumping from one state to another is usua
very large, much larger than the normal energy fluctuatio
at 50 K. But as the system evolves through the cooperati
small-amplitude oscillations of the tetrahedra, eventual
the potential energy barriers collapseto the small value
we have measured. This is in contrast to the idea of t
system jumping across a fixed energy barrier. There
therefore a range of barrier heights, with a small neck
the system phase space that allows the sample to go fr
one configuration to the other with little cost in energy. O
course, for quantum tunneling it will be possible for jump
events to sample more of the energy barriers than the o
given by this neck in phase space. This is one of the ne
insights into the operation of these tunneling states th
emerges from this work.

Further insight into the issue of large-amplitude re
orientational motions can be obtained by returning t
the initial topology of the glass configuration with linea
Si—O—Si bonds. Recall that this structure was relaxe
using molecular dynamics simulations, which allowed th
tetrahedra to rotate to give Si—O—Si bond angles o
around 145±. For our initial configuration we have pro-
duced a number of different relaxed structures by usin
different initial atomic velocities and have then compare
the different structures using the method employed f
comparing configurations before and after jump event
From calculations of the participation numbers we fin
that the changes between different relaxed configuratio
involve around 100 tetrahedra and that in each case
is a subset of this group of tetrahedra that is involve
in the large-amplitude displacements described abov
This clearly suggests that our network contains islands
floppy regions (in the sense of being able to support larg
amplitude reorientational motions) within a more rigid
framework (albeit one that can sustain floppy modes wi
infinitesimal displacements).
3433
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Finally, it should be noted that large amplitude atomi
motions and potential tunneling states have been stud
in metallic and other glasses [28], but in each case the
identification has always required some initial stimulatio
of the system. Here we have for the first time identifie
potential tunneling states naturally by allowing the syste
to evolve in its own phase space.

To conclude, we have shown that (i) silica glass ne
works have a flexibility for infinitesimal displacements
that is similar to that of crystalline networks and (ii) there
exist regions within the glass network in which the tetra
hedra are able to undergo large-amplitude reorientatio
with little energy cost and with low energy barriers fo
cooperative motions. These may be responsible for t
anomalous low-temperature thermal properties of glass
although it is not possible to calculate these within ou
classical simulations.

We are grateful to the EPSRC for financial suppor
and K. T. is grateful to the Cambridge Overseas Tru
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