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Low Energy Dynamics and Tunneling States in Silica Glass
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We present the results of a simulation study of silica glass which addresses the issue of large-
amplitude low energy motions involving reorientations of Si@trahedra. Using methods developed
for crystalline silicates we find that random networks of linked Si€trahedra are as flexible as
crystalline phases for infinitesimal displacements. Patches of the networks can also undergo large
sudden distortions involving reorientations of the Si@trahedra, with little change in energy and an
energy barrier of around 0.06 eV. These may act as tunneling states to provide the mechanisms for the
anomalous low-temperature thermal properties of glasses. [S0031-9007(98)07382-7]

PACS numbers: 61.43.Fs, 63.20.Pw, 63.50.+x, 66.35.+a

The structure of silica glass is well described as an infi-The number of floppy modes is equal to the difference be-
nite random network of SiQtetrahedra linked together at tween the degrees of freedom and the constraints [16,17].
the corners. Evidence comes from diffraction studies [1]For silica the number of degrees of freedom equals the
reverse Monte Carlo [2] and molecular dynamics simulahumber of simple bond constraints [18], so the topol-
tions [3], and model building [4]. Over short length scalesogy of silica, whether amorphous or crystalline, is nei-
there are similarities between the structures of amorphouser floppy nor overconstrained but balanced between the
silica and the cristobalite and tridymite crystalline phaseswo extremes. Thus one cannot easily predict whether the
of silica [5], and the quantitative extent of these similaritiesfloppy modes envisaged in [15] can exist.
and the associated length scale has recently been deducedVe have recently obtained new insight into this is-
[6]. A description of the vibrational dynamics of silica sue by studying the crystalline forms of silica (and other
glass is less developed [7-10]. framework aluminosilicates) using our “rigid unit mode”

In this Letter we address the issue of the excitation§ RUM) model [19], in which we treat the SiCtetrahe-
between 0-5 meV, which will include those believed todra as rigid units and search for phonon modes that can
be responsible for two-level tunneling states [11] andpropagate without the tetrahedra distorting [20]. We have
associated with the anomalous thermal behavior at lofound that symmetry can cause some of the bond con-
temperatures [12]. We find here, rather surprisinglystraints to be degenerate, allowing for a nonzero num-
that silica glass has the same degree of flexibility adber of zero-frequency phonons (“RUMSs”). For example,
dynamically disordered [13] crystalline phases. We alsg3-cristobalite, like most crystalline framework alumino-
find that it is able to undergo large sudden rotationakilicates, has RUMs on planes of wave vectors [13]. For
rearrangements of the structure with little energy costtwo phases related by a displacive phase transition there
which may be identified with the tunneling states of [11].are fewer RUMs in the phase of lower symmetry. At the
Earlier difficulties in clearly pinpointing these states haveother extreme, high-symmetry zeolites may have one or
led to some doubt about their existence [14]. In additiormore RUMs for each wave vector [21]. RUMs are not
to visualizing these tunneling states we also answer thalways restricted to wave vectors on symmetry points and
natural question concerning the extent of the part of glassan have wave vectors on exotic curved surfaces within
structure which flops from one state to another, whether ithe Brillouin zone [22]. Since crystalline phases can thus
involves one atom or tetrahedron, or whether it is spatiallyiolate the simple bond constraint counting scheme to a
more extended. greater or lesser extent, it is not possible to predict the

Any low energy vibrational modes will necessarily in- number of floppy modes in glasses from simple constraint
volve only minimal distortions of the SipDtetrahedra counting arguments alone.

[15]. Whether an infinite framework of corner-linked  Although RUMs are important in crystalline phases,

SiO, tetrahedra can vibrate without the tetrahedra distortwhen RUMs occur with wave vectors on surfaces in re-
ing is actually a very subtle issue (and for a long timeciprocal space, the relevant fraction of reciprocal space
it was not certain that such an infinite framework couldis vanishingly small. In crystalline phases one can hunt
even be constructed). It is conventional to refer to thefor RUMs in a systematic manner because symmetry
vibrational modes in glasses which do not involve distor-gives a guide, but in glasses the lack of translational
tions of the interatomic bonds as “floppy modes” [16], andsymmetry makes any systematic search impractical. In-
if the only forces are those associated with stretching oftead we use a different approach, which uses our split-
these bonds, the floppy modes will have zero frequencyatom algorithm [20,23] within the formalism of molecular
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lattice dynamics to calculate the vibrational density offor any mode of vibration indicate a high degree of
statesg(w) by diagonalizing the dynamical matrix for localization, whereas values nearer 1 indicate that the
a grid of wave vectors. This method givg$éw) = w?  vibration involves all atoms in the sample. For our
as w — 0 (the normal Debye result) when there are noglass configuratior? ~ 0.8 for all w, which implies that
RUMs, andg(w) ~ constant asv — 0 when there are the loww modes involve many tetrahedra and are not
RUMs [24]. We have used atomic configurations oflocalized
silica glass obtained from starting configurations of amor- In Fig. 1 we compare, for interest, the effect of re-
phous silicon formed by the Wooten-Weaire algorithmmoving a fraction of the Si atoms in order to create
[25]. Oxygen atoms were incorporated into the config-nonbridging Si—O bonds—this may resemble the basic
uration along each Si—Si bond, and the structure wasopology of tetrahedra in alkali silicates. The result is the
relaxed using molecular dynamics simulations, with theformation of realo ~ 0 modes, which are seen as the
potential of [26] to remove the linear Si—O—Si bonds, peak ing(w) at w = 0. This peak is formed out of low
a point we return to later. The radial distribution func- energy modes ig(w) for the fully linked silica glass, and
tions of our relaxed structures are in excellent agreemerity increasing the number of Si vacancies we find that the
with experimental data. peak atw = 0 increases and opens up the lawgap in
The calculateds(w) for silica glass is compared with g(w). The neww ~ 0 modes have values & ranging
that of B-cristobalite in Fig. 1. The striking result is uniformly from 0 to ~0.8. This increase in the number
the similarity between the two cases far— 0, which  of RUMs is consistent with the observation of increased
suggests thaglass has the same low energy flexibility inelastic neutron scattering intensity found in alkali disili-
as the crystal High-precision experimental comparisons cate glasses over silica glass [7].
of the low energy spectra of glass and crystalline silica The existence of lows modes indicates a flexibility
are not common, but this result is consistent with recenagainst infinitesimal atomic displacements, but the picture
inelastic neutron scattering data [7]. From the modehat has been proposed to explain the anomalous thermal

eigenvectors we can define the participation r&ti¢9]: data at low temperatures [12] suggests the existence of
S [ul?? Iarge-amplitude reorientatio_nal motions of Si@trahedra _

P == (1) [11]. Figure 2 shows the time dependence of the coordi-
N3 lul* natesx, y, z of one atom that shows a large jump motion,

whereu is the displacement of an atom in a vibration, together with other similar events we have identified in
and the sum is over all atoms. Smaller values?f other simulation runs for comparison. In Fig. 3 we show
shapshot images of the reorientations of the associated
group of tetrahedra. For this jump motion the participa-
tion ratio indicates that the number of tetrahedra involved
in this event is around 30. The largest atomic displace-
ment in these events is typically 0.8 A. See Ref. [27].
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FIG. 2. Time dependence of atomic coordinates,z (in
FIG. 1. Vibrational density of stateg(w), calculated using orthogonal A units) for an atom undergoing a large jump
our split-atom method [20,23], for silica glasg-cristobalite,  involving a movement of about 0.5 A (top), and an atom in
and the silica glass configuration with a fraction of missinga different simulation run that jumps from one site to another
Si atoms. and subsequently jumps back again (bottom).
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This procedure gave an energy barriel0df6 = 0.02 eV

(for about 30 tetrahedra; see above), and the change
in energy of the sample on flipping from one state to
another is less than 0.01 eV. The uncertainties arise from
numerical errors in the simulations that are hard to control
to greater precision because of their small size relative
to the total system energy. Our estimates of the size of
the energy barrier and the energy difference are within the
ranges proposed by [11]. Our simulations show that jump
events in a sample of 216 tetrahedra occur at intervals of
around 20 ps.

What is clear is that the system can remain in one state
for times corresponding to many periods of oscillation of
SiO, tetrahedra before jumping to another state, which
means that the system has a local free energy minimum
in this state, without being able to oscillate back and
FIG. 3. Snapshot images of the tetrahedra participating in théorth into the second state. This means that the jump can
jump event indicated in Fig. 2. The figure shows superimposeccur only when all of the tetrahedra associated with the

snapshots of the local configuration captured before and aft ; ; ;
the jump event in order to highlight the Iarge-amplitude%mp are aligned in a particular way. In effect, for most

reorientational motions. configurations of the tetrahedra the energy barrier against
the system jumping from one state to another is usually
) _ o very large, much larger than the normal energy fluctuations
We consider thathe jump event shown in Figs. 2 and at 50 K. But as the system evolves through the cooperative
3 is a candidate event for the jump motions envisagedma|l-amplitude oscillations of the tetrahedra, eventually
N the tWO'IeVeI tunne“ng eXC|tat|Ong_|OWeVer, It IS not the potent|a| energy bar”ers C0”apSe the Sma” Value
possible to detect an energy barrier in the simulations ae have measured. This is in contrast to the idea of the
finite temperature. Figure 4 shows the potential energy ofystem jumping across a fixed energy barrier. There is
the (constant total energy) simulation through this jumptherefore a range of barrier heights, with a small neck in
event, and any energy changes are clearly substantialiye system phase space that allows the sample to go from
lower that the normal energy fluctuations. To extractone configuration to the other with little cost in energy. Of
values of the energy barrier and change in energy as theyrse, for quantum tunneling it will be possible for jump
system flips from one state to another we have relaxegdyents to sample more of the energy barriers than the one

through the jump event (i.e., the transition state) using thgsights into the operation of these tunneling states that
molecular dynamics code at 0 K. For the configuration inemerges from this work.

the transition state we pinned the position of the atom that Fyther insight into the issue of large-amplitude re-
moves the most in order to prevent the state from relaxingrientational motions can be obtained by returning to
Si—O—Si bonds. Recall that this structure was relaxed
04 . ‘ ‘ . ' using molecular dynamics simulations, which allowed the
tetrahedra to rotate to give Si—O—Si bond angles of
around 1458. For our initial configuration we have pro-
02| ] duced a number of different relaxed structures by using
different initial atomic velocities and have then compared
the different structures using the method employed for
00 ‘ comparing configurations before and after jump events.
From calculations of the participation numbers we find
that the changes between different relaxed configurations
02} ] involve around 100 tetrahedra and that in each case it
is a subset of this group of tetrahedra that is involved
in the large-amplitude displacements described above.
04,5 = = - L = - This clearly suggests that our network contains islands of
Time {ps) floppy regions (in the sense of being able to support large-
FIG. 4. Time dependence of the potential energy of the@Mplitude reorie_ntational motions) \{vithin a more rigi_d
simulation sample (with its average value subtracted) throughramework (albeit one that can sustain floppy modes with
the jump event shown in Figs. 2 and 3. infinitesimal displacements).

Potential energy, E-<E> (eV)

3433



VOLUME 81, NUMBER 16 PHYSICAL REVIEW LETTERS 19 O©TOBER 1998

Finally, it should be noted that large amplitude atomic[16] M.F. Thorpe, J. Non-Cryst. Solids7, 355 (1983).
motions and potential tunneling states have been studidd7] J.C. Maxwell, Philos. Mag27, 294 (1864).
in metallic and other glasses [28], but in each case theill8] Some care is needed to ensure that only independent con-
identification has always required some initial stimulation ~ Straints are counted. For an Si@trahedron, the rigidity
of the system. Here we have for the first time identified of the _tetrahedron is fully defined by the constraints on the
potential tunneling states naturally by allowing the system  four Si—O bonds and five of the six O—0 bonds. Thus
to evolve in its own phase space. for silica, th_ere are nine constraints and 9 d_egrees of _free-
R dom associated with each SiO Our alternative analysis
To conclude, we h<_ave shc_>w_n_tha_t () S|I_|ca glass net- [19,20] is to consider the SiOtetrahedra as rigid units
works have a flexibility for infinitesimal displacements with 6 (translational and rotational) degrees of freedom,
that is similar to that of crystalline networks and (ii) there and three constraints associated with holding the corner
exist regions within the glass network in which the tetra- of any tetrahedra at the same position as the corner of
hedra are able to undergo large-amplitude reorientations its neighboring tetrahedron. This gives the same result.
with little energy cost and with low energy barriers for Either analysis assumes an infinite system, since the non-
cooperative motions. These may be responsible for the bridging bonds at surfaces will reduce the number of con-
anomalous low-temperature thermal properties of glasses,  Straints per atom. _ _
although it is not possible to calculate these within our°l %ﬁnT.M%%\igi E?l'Pl'OSG;Ci%ée\)/. Heine, and B. Winkler,
CI&::/S;CZSIEL;\IZ(;S:’I?& the EPSRC for financial support [20] A.P. Giddy, M. T. Dove, G. S. Pawley, and V. Heine, Acta
. . ’ Crystallogr. Sect. A49, 697 (1993); K.D. Hammonds,
and K.T. is grateful to the Cambridge Overseas_ Trust  \1 T Dove, A.P. Giddy, and V. Heine, Am. Mineral9,
for support. The calculations were performed using the 1207 (1994).
Hitachi computers of the High Performance Computing[21] K.D. Hammonds, H. Deng, V. Heine, and M.T. Dove,
Facility in Cambridge. Phys. Rev. Lett.78, 3701 (1997); K.D. Hammonds,
V. Heine, and M. T. Dove, J. Phys. Chem.1®2 1759
(1998).
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