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Abstract. In soft-mode structural phase transitions the Ginzburg temperature interval in which
fluctuations and the interactions between them become important is often observed to be small
on the scale of the transition temperature. We congider the size of the Ginzburg interval (G} in
framework and ‘cogwheel” structures using the concept of ‘rigid unit modes’. Such materials,
as well as being very displacive, i.e. close to the soft-mode limit, have an extremely anisotropic
phonon spectrum. Modeiling these two properties with a suitable effective Hamiltonian for the
degrees of freedom driving the transition we find that the GI can range from very smatl to large,
depending on the balance between displaciveness and anisotropy. For the two perovskites SrTiO;
and LaAlOj and the ‘cogwheel” structure K25eQO4, we obtain values of the model parameters
describing displaciveness and anisotropy from experimentally measured phonon dispersions and
find, for the size of the 1, quantitative agreement with experiment. We also estimate typical
values for the model parameters and the size of the GI for framework silicates, using quartz and
cristobatite as examples. Finally, we use computer simulations to confirm the results of our
theoretical analysis over a wider range of model parameters.

1. The Ginzburg interval in rigid unit mode systems

The purpose of this paper is to discuss the magnitude of the Ginzburg interval (GI), ATg,
in displacive structural phase transitions. We are concerned with materials that have strong
anisotropies in the phonon spectra in the neighbourhood of unstable soft modes. These
anisotropies can arise naturally, for example, in structures that consist of linkages of
relatively rigid units, where the soft mode is one of the so-called ‘rigid unit modes’ that can
propagate with no distortion of the units [1-4]. Rigid unit modes have been found to be
particularly important in silicates, but we will point out later than similar anisotropies can
arise in other systems. In this paper we will address the issue of the effect of the anisotropy
of the phonon spectrum on the size of the GL.

Structural phase transitions in selids are traditionally described in terms of Landau free
energies which contain the order parameter of the transition, @, as a variational parameter.
For example, minimization of the simple Landau free energy

F=a(T - T)0*+ g0Q* e}
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yields the ‘classical’ temperature dependence of the order parameter below the transition
temperature T

QT < (T, - T)'? (2)

which is obeyed quite well in many structural phase transitions over a wide temperature
range [5].

It is known, however, that the expression (1) cannot be true arbitrarily close to the
transition temperature. Within the GI long-wavelength fluctuations of the (local) order
parameter increase without limit and become ‘non-classical’ in the sense that they can no
longer be neglected or treated by a classical decoupling scheme such as mean field or
rencrmalized phonon theory {6-8].

A traditional approach to determining the GI is to add terms of the form [ dry(VQ)?
to the Landau free energy (1) and to define the Gl as the temperature region in which this
augmented Landan free energy is no longer internally consistent [9]. (For a criticism of this
method see, for example, [10).) The GI is thus expressed in terms of the phenomenological
parameters o, T;, 8, ¥ of the augmented Landau free energy. Alternatively, one can obtain
the GI starting from a description of the system in terms of an effective Hamiltonian, whose
parameters reflect the microscopic mechanisms of the phase transition more directly than
those of the Landau free enmergy. The materials with which we are concerned can be
easily characterized in terms of an effective Hamiltonian, whereas the precise form of the
corresponding Landau free energy is less clear; we shall therefore use a model effective
Hamiltonian for our calculations of the GIL.

We now describe the main features of the types of structures under consideration and
the rigid unit mode characteristics of their phonon spectrum. We restrict ourselves to the
essential features that will have to be contained in our mode! effective Hamiltonian and refer
the reader to [3,4, 11-14] for more details of the rigid unit mode model. Many materials
contain or consist of rather rigid units such as tetrahedra, octahedra or (planar) triangles. In
what we term ‘framework’ structures these form a continuous network by sharing corner
atoms between adjacent units. Examples are many alumino-silicates containing joined AlO4
and SiOy tetrabedra and perovskites containing X Qg octahedra. The point about a framework
structure is that the units are very stiff but are linked flexibly to each other at the corner
atoms (although we note here that many perovskites cannot really be described in this way;
however, we will continue to use the general perovskite structure as an example since it has
the great advantage that it has a relatively simple structure). The following question then
arises: if we treat the units as completely rigid, does the framework have any geometrically
allowed phonon modes of motion in which the units only rotate and/or translate as rigid
wholes? The answer is that such ‘rigid unit modes’ (RUMs) do indeed exist along special
directions in the Brillouin zone [i1, 14]. Clearly, in a real material, the RUMs will be
phonons with a relatively low frequency with perhaps one of them resulting in a soft-mode
phase transition as considered here, while all other phonons are typified by much higher
frequencies because they necessarily involve distorting the rather stiff units,

We see therefore that the phonon spectra w?(k) of framework structures are very
anisotropic, with *valleys’ in k-space where there are geometrically allowed RUMs. These
valleys will make the dominating contributions to the fluctuations near T; and determine
the Gt ATy in our theory.

By way of example, consider the ‘two-dimensional (2D) perovskite’ structure shown
in figure 1(a): a square lattice of octahedra representing the rigid units {and appearing as
squares in the two-dimensional projection) linked via shared corner atoms. If one of these
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(=) (b)

Figure 1. The ‘two-dimensional perovskite® structure, Octahedra appear as squares in the
projection; the links between neighbouring squares correspond to atoms shared between the
octahedra in real perovskites. (@) Undistorted structure. (b) RUM displacement pattern, Notice
how, by the opposite rotations of neighbouring octahedra indicated in {(a), the shape of the
octahedral units is preserved while none of the links between them is broken.

octahedra is rotated from its equilibrium position by an angle 8, it will ry to rotate its
nearest neighbours by an angle —# in order to preserve its shape. In a ‘knock-on effect’,
this leads to rotations of the next-nearest neighbours and so on, finally yielding the pattern
of alternating rotations shown in figure 1(5). This displacement pattern is a RUM of 2D
perovskite because it leaves the octahedral units undistorted. Since the rotation angles of
neighbouring octahedra have opposite signs, the wavevector of this RUM lies at the corner
of the Brillouin zone of the square lattice. It can be checked that 2D perovskite has no other
non-trivial RUM and so we shall call the Brillouin zone corner RUM ‘isolated’.

- In general, however, framework structures can support 2 number of RUMs. To see
how this happens, consider as an example ‘three-dimensional (3D) perovskite’, obtained by
stacking layers of 2D perovskite on top of each other, A RUM for this structure can be
constructed by rotating the octahedra in every plane according to the 2D perovskite RUM
pattern. But as long as the corresponding rotation angles are sufficiently small, they can
be chosen independenily of each other without breaking the bonds beiween neighbouring
octahedra in adjacent planes. Therefore, 3D perovskite has a line of RUMs in wavevector
space, along the edge of the Brillouin zone corresponding to the direction perpendicular
to the 2D perovskite layers. (Of course, there exist in fact three such RUM lines, since the
octahedra can be rotated around each of the axes of the cubic lattice.) More complicated
framework structures can be shown to have RUMs along planes or even across the whole of
the Brillouin zone [11, 14].

While framework structures provide the clearest examples of RUMs, we believe that the
situation is similar in other systems that contain distinct atoms or rigid molecular groups
that do not share atoms. Examples involving ‘cogwheel’-type motions are the A,BX,
salts such as K;S5e0y4, and biphenyl. In these materials one rigid unit can rotate easily
only if neighbouring units also rotate in the manner of enmeshed cogwheels. The wrong
rotations will bring into play the strong short-range repulsive forces between the units. Other
systems involve atoms sliding across each other, maintaining a constant contact distance.
Examples include the two ferroelastic materials HCN and Na,CO; [4]. In the case of
sliding systems, the anisotropy of force constants (analogous to the difference in framework
structures between the stiffness of the units and the weak rotational interactions between
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linked units) arises from the difference between the longitudinal (radial) and transverse
(sliding) force constants between two atoms in contact. In all these examples the phonon
spectrum will contain valleys in k-space containing the easy modes of distortion, with rather
steep dispersion away from the soft directions, and our work will be directly relevant.

The structure of the paper is as follows. In section 2 we construct a suitable meodel of
the phonon spectrum exhibiting the *valleys® around the RUMs in Kk-space. This will be the
main ingredient for the model effective Hamiltonian from which we calculate the Gi, We
consider two versions, one with a RUM line and one with a RUM plane, corresponding to
a ‘RUM dimensionality’ dpunv = 1 and 2, respectively. The model is characterized by two
dimensionless parameters, s and ¢. The ‘displaciveness’ s specifies how close the system is
to the soft-mode limit at s = 0; the crossover from soft mode to order—disorder behaviour
would occur around 5 = 1 in our model. We have shown elsewhere [12] that a RUM system
will in general be near the soft-mode limit, i.e. have s « 1, because § is given more or
less by the ratio of the weak forces between linked units, which drive the transition, to the
large stiffness of the units. Other things being equal, a small s tends to give a small GI.
The ‘anisotropy’ parameter € measures the dispersion of w?(k) among the RUMs relative
to the dispersion in the rest of the spectrum, so we expect ¢ < 1. The larger ¢, the less
soft will be the RUMs away from the special point kg where the soft-mode transition occurs
and hence the smaller the fluctuations and the GI will be. The third factor determining the
size of the GI is the dimensionality of the RUM sector: a system with a plane of RUMS in
k-space (drum = 2) has larger fluctuations and a larger Gl than a system with a RUM line
(drum = 1).

In section 3 we discuss the principles of how to calculate the G1 from the model effective
Hamiltonian for RUM systems, namely by determining the temperature region in which the
best classical approximation breaks down. Our model treats only one coordinate per unit
cell: the relevant rotation and/or translation of the rigid umt. The effect of ali other optic
and acoustic modes is swept up into the parameters of the model effective Hamiltonian.
Since the system is in the soft-mode regime, the best classical approximation for analysing
the effective Hamiitonian is the ‘independent mode’ approximation, from which the size of
the Gl is calculated in section 4. The results are presented and interpreted in terms of the
displaciveness § and anisotropy €, in particular for some limiting cases.

In section 5, we calculate the size of the GI quantitatively for the two perovskites
8rTi0; and LaaAlO; and the ‘cogwheel structure’ K;S5eO4 and compare with experiment.
We furthermore estimate typical values for the model parameters and the size of the &1 for
framework silicates, using quartz and cristobalite as examples.

Results of computer simulations we performed in order to confirm our theoretical
analysis over a wider range of model parameters are reported in section 6. We conclude in
section 7 with a brief summary of our results.

2. Model phonon spectrum for rigid unit mode systems

In this section we develop a model to represent the phonon spectrum relating to a soft-mode
phase transition in a system with RUMs. It will be based on consideration of the perovskite
gtructure but will be sufficiently general to be generic. We will use this phonon model as
the quadratic part of our model effective Hamiltonian for RUM systems. Some of the (bare)
phonons will be unstable, namely the soft mode and phonons near it; fourth-order terms
in the effective Hamiltonian will stabilize the phonons at a high temperature and give a
soft-mode phase transition at some 7. in the usual manner of the ‘¢* model’.
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The first point is to represent the stiffness of the units. As mentioned in section 1, all
phonons except RUMs, by definition, involve some distortion of the rigid units. (We shall
for convenience continue to refer to the units as ‘rigid’, meaning they have large but finite
stiffness.) In figure 1(a) each square has five independent modes of distortion described
by four force constants (two modes are degenerate); three-dimensional octahedra require
even more patameters. It is easier, and for our purposes sufficient, to use the ‘split-atom’
approach [11, 14], considering the octahedra as totally rigid and instead treating each corner
atom that links two adjacent octahedra as an elastic joint, i.e. as two halves of a ‘split
atom’ with a harmonic spring between them. The finite stiffness of the octahedra is then
modelled by the single force constant of this spring which tends to keep the corners of
adjacent octahedra, i.e. the halves of the split atom, together.

In the 2D perovskite case, the potential energy of such a spring between neighbouring
units { and j can be written as

1L(g: + ¢;)* (3

to lowest order in the rotation angles ¢ and ¢;. For ¢; = —¢; this expression vanishes,
reflecting the fact that the units can rotate as rigid wholes without breaking the link between
them (see figure 1(b)). For ¢; 7 —¢; we obtain a non-zero contribution due to the separation
of the halves of the split corner atom which models the distortion that the octahedra would
have to undergo were we to keep them linked via the ‘un-split’ corner atom. The coupling
constant L in the split-atom model therefore corresponds to the stiffness of the octahedral
units.

In order to have a force which drives the phase transition, we add a negative potential
ehergy term

- 35 — )" @

favouring the bending of bonds between neighbouring units. Clearly, this term needs to
be countered by a positive higher-order term in order to make the system stable, but for
the moment we only concern ourselves with the bare phonons and hence the quadratic
contributions to the potentiai energy. We expect the (positive} force constant S describing
forces between the octahedral units to be small (5) compared to the large (L) force constant
which reflects the rigidity of the units [4, 12]:

S«L. ()
The total potential energy of our 2D perovskite model can now be written as

Vip =Y L@ + ¢ — 15 — ) 6)
&4}

where the sum extends over all pairs of octahedra which are nearest neighbours. We
transform to Fourier coordinates:

1 .
oh) = = Z ¢ (rs) exp(—ik « ;) (7
where N is the total number of octahedra, located at the lattice sites vy, We obtain

Vio = 3 (-85 + k) ()6 (~R) ®)
k
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with the sum running over all wavevectors in the two-dimensional Brillouin zone and
Jap(k) = 2(L + $)(2 + coskea + coskya) (9

where a is the lattice parameter. Up to an unimportant mass scale, which we set to unity,
we can read off the bare phonon spectrum of our model:

wip(k) = —85 + Jop(k) (10)

where the frequency of the Brillouin zone corner RUM is imaginary, o*(k = (n/a, 7 /a)) =
—885, as required for a soft-mode phase transition in which this mode freezes.

If we now turn to 3D perovskite, all we need to do is to add up the contributions from
the constituent 2D perovskite planes. In order to make the model a truly three-dimensional
one, we add a coupling between neighbouring octahedra in adjacent planes of the form (3)

35" (e + 1) an
with a much smaller force constant S" oheying
KL (12)

since the coupling between octahedra in adjacent planes arises not from distortion of the
units but from bond-bending-type forces. We thus obtain for the potential energy of our 3D
perovskite model

Vio = 5 S2(=85 + Jio()$ ()6 (k) 13)
k

with the sum now running over the three-dimensional Brillouin zone and

Jip(k) = 2(L + SH2 + cos kea + coskya) + 25'(1 + cos k,a). (14)
In terms of the abbreviations

A=38S J, =28 Ja=2L + S) (15)

for the modulus of the bare frequency of the rmost unstable RUM squared and the coupling
constants determining the dispersion along RUM (suffix r) and non-RUM {suffix n) directions,
the corresponding bare phonon spectrum w%D(k) = =85 + Jiplk) is

wly(k) = —A + Jo(2 + coskaa + coskya) + J (1 + cosk,a). (16}

This is plotted schematically in figure 2 for & moving away from the most unstable RUM
at kg = (w/a,n/a, = /a) along the ‘RUM direction’, %,, and along one of the non-RUM
directions, k,. We observe the following two characteristic features of the bare phonon
spectrum.

(1) Displaciveness. The bare frequency squared of the most unstable RUM is small
compared to the frequency squared of typical non-RUMs as a consequence of (5):

S=m =], (17)
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RUM direction non-RUM direction

k= %?%akz) k=(kx:§,%)
wip (k)
2J,
J I A ———
2J; i. ......... :h--_ .-4 .................... L A
0 k. - ke 0

Figure 2. Schematic plot of the model bare phoron spectrum (16} for a RUM system, for k
maving away from the most unstable RUM at ko = (7 /a, 7 /a, n fa) along a RUM direction, &,
and along a non-RUM direction, k.. The important features are displaciveness (A < J,) and
anisotropy (J; < Jo).

We can say that the RUM line lies along ‘the bottom of a steep valley’ [4] in wavevector
space or, equivalently, that the fraction of bare modes which are unstable is small.

(ii} Anisotropy. The dispersion along the direction of the RUM line is much smaller than
away from it:

=—— K1 (13)

as follows from (12). The smaller J; (and hence ¢) becomes, the larger the number of
unstable bare modes.

Using the fact that the size of the GI decreases with the fraction of bare modes which
are unstable (A P Levanjuk, private communication), we can qualitatively predict that the
GI must become smaller as we increase the displaciveness (i.e. make s smaller) but larger
as we increase the anisotropy (i.e. make ¢ smaller). The actual size of the GI will depend
on the balance of these two factors, as pointed out in section 1.

It will sometimes be helpful to interpret our results in terms of two characteristic
correlation length scales in RUM systems. As shown in the next section and in appendix 1,
the parameter A gives not only the bare frequency squared of the most unstable RUM at the
Brillouin zone corner kg, but also the scale of the upwards renormalization of the phonon
dispersion due to anharmonic effects, at temperatures well above or well below the phase
transition. Using this, and expanding around ko, we obtain for the typical renormalized (as
opposed to bare) phonon dispersion around the lowest-frequency mode

WL, (k) ~ +A + L1 [(ke — ko) + (ky — koy)?] + 3 Fa®(k, ~ ko). (19)

Disregarding all numerical factors, we read off that fluctuations along the {(real-space) non-
RUM directions x and y will typically be correlated over

b= (/AP =572 1 (20)
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lattice units, whereas along the RUM direction z, correlations have a range of only

£ = (/A = (/) = €%, « &, @21

We stress here that we have defined &, and & as temperature-independent quantities, quite
unlike the temperature-dependent correlation lengths often used in, for example, discussions
of critical phenomena. The quantities &, and £ can be thought of as ‘prefactors’ in the
formulae for the corresponding temperature-dependent correlation lengths, setting the overall
scale of correlations over a wide temperature range.

The inequalities for &, and & given in (20) and (21) are derived from displaciveness (17)
and anisotropy (18). For 3D perovskite, they can easily be understood geometrically, The
value of §, describes correlations between rotations of octahedra in the same ‘2D perovskite
plane’ which are strongly coupled due to the stiffness of the units and the knock-on effect
discussed above. The much smaller value of &, on the other hand, reflects the fact that the
octahedra in adjacent planes are only weakly coupled through bond-bending-type forces.

To summarize, the RUM picture has two crucial conseguences. On the one hand, it leads
to long-range correlations along directions where no RUMs exist, corresponding to a strong
dispersion in k-space, On the other hand, correlations along RUM directions will be of rather
short range, reflecting the flat dispersion along RUM lines or planes. Qur main concera will
be to analyse how the interplay of these two length scales affects the size of the GI.

3. Effective Hamiltonians and how to determine the size of the GI

We base our calculations of the GI on a model] effective Hamiltonian which captures the
essential features of RUM systems. We prefer starting from an effective Hamiltonian rather
than a Landau free energy since the former contains in a more direct way information
about the microscopic features of phase transitions in framework structures which the RUM
model provides. Essentially, the effective Hamiltonian allows us to focus on the degrees of
freedom most relevant to the transition. In the perovskite case, for example, the angles of
rotation of the octahedra are the relevant degrees of freedom, whereas all other degrees of
freedom can be considered irrelevani. Formally, an effective Hamiltonian can be defined
with respect to an arbitrary set ¥ = {y;} of observables of a system as

exp(—BHer(T)) = f dl* exp(—BH(I))8(¥ — T(I)) (22)

where H is the full Hamiltonian, I" denotes a set of canonical phase space coordinates and
B = 1/kgT. From the relation between the effective Hamiltonian and the total free energy
of the system

exp(—BF) = f 4 exp(—f He (D)) 23)

it can readily be seen that the effective Hamiltonian acts just like an ordinary Hamiltonian
in generating the equilibrium distribution of the 3. Due to the free energy contribution
of the degrees of freedom not contained in ¥, however, the effective Hamiltonian will in
general depend on temperature. This temperature dependence will be ‘smooth’ (without
non-analyticities at the transition temperature) if the set ¥ = {;} contains all degrees of
freedom whose fluctuations become non-classical, i.e. strongly interacting, near the phase
transition,
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How, then, do we determine the GI if we are given an effective Hamiltonian? We define
the GI to be the temperature interval around a phase transition in which ‘non-classical’
behaviour occurs, in the sense that fluctuations and their interactions become important.
Stated differently, inside the Gl the behaviour of a system can no longer be described within
a ‘classical’ approximation which decouples fluctuations and therefore effectively reduces
the system to an assembly of simple non-interacting entities, Consequently, the GI can
be determined by applying the most suitable classical approximation to a given effective
Hamiltonian and checking where this approximation breaks down. We note three points.

Firstly, various classical approximation schemes might in general have to be tried out to
establish which one is most suitable, i.e. optimal in approximating the actual behaviour of
a system described by a given effective Hamiltonian. For the model effective Hamiltonian
that we consider below, we can exploit results from the literature to avoid this complication.

Secondly, as the size of the GI depends on the precision of the classical approximation
that we require, there is inevitably some arbitrariness in the calculation of it. In order to
keep our discussion as quantitative as possible, beyond this inherent limitation, we keep
throughout numerical constants that are often dismissed as ‘of order unity’ in discussions
of the GL

Thirdly, we follow the widely accepted assumption that the part of the GI extending
above the transition temperature is approximately equal to the part below the transition, and
we therefore only calculate the latter. Our calculations will yield the value of the order
parameter at the lower boundary of the GI. We show in the next section how this quantity
is related to the size of the GI on the temperature scale.

4. Model effective Hamiltonian for RUM systeins and calculation of the GI

From our discussion in sections 1 and 2 it is clear that a model effective Hamiltonian for
RUM systems must embody both displaciveness and anisotropy. The bare phonon dispersion
(16) that we have read off from our mode! potential energy for 3D perovskite (13) already
fulfills this requirement, and we take (13) as the quadratic part of our model effective
Hamiltonian, For simplicity, however, we shift the most unstable RUM from the Brillouin
zone corner to the zone centre in order to have an ordered (low-temperature) phase of the
‘ferro’ type. We also set J = J, and use definitions (17) and (18) to obtain

Howte = 3 (=57 + J ()9 (kIS (~F) @4)
13

with J{k) given by
J(&) = Jige(k) = J(2 — coskya — coskya) + € J (1 — cosk,a). (25

This form of the bare phonon dispersion models systems with a RUM line as well as, for
€ = 1, systems with an isolated RUM, For the case of a RUM plane, all we need to do is to
change the definition of J (k) such that there are two RUM directions and only one non-RUM
direction:

J{k) = Jppne (k) = €J (2 — cos kxa — coskya) + J (1 —cosk.a). (26)

We now have to add an anharmonic part to our model effective Hamiltonian in order
to make it stable. We choose a simple local fourth-order anharmonicity:
B

T Do kGG Us)d (ks ~ ky — k) D)

1
Hashorm = 7 > B! =
i ki.ka ks
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and write our total model effective Hamiltonian, a ‘¢*-Hamiltonian’, as
I
H = Huyuae % Habomn = 5 3 (=57 + 1 ()¢ (K)o (—k)
k

t o Y ksEDS—hy ks~ k) 28)

ki ky.key

with J(k) given by (25) or (26), respectively. To be precise, we should add a kinetic energy
term. This is however immaterial to our discussion and shall therefore be omitted.

Several comments are now in order. We think of the ¢; as generalizations of the
octahedra rotation angles in our perovskite mtodels, ie. as local variables describing the
rotations and/or translations of the units associated with the RUMs in the system under study.
The ¢ (k) are the corresponding optic mode coordinates.

Furthermore, we have assumed the parameters B, J, 5, € to be temperature independent.
This implies two assumptions. Firstly, that apart from the ¢ (k), no other degrees of freedom
of the system undergo non-classical fluctuations near the phase transition, so that there are no
non-analyticities in the temaperature dependence of the model parameters. Secondly, we take
the entropy contribution from these other ‘irrelevant’ degrees of freedom as non-essential for
driving the transition, an assumption which is supported by calculations we have performed
on quartz. Hence we assume our model parameters to be actually temperature independent,
in contrast to other model effective Hamiltonians which often use a term like a(T — Tp)
instead of our —s5J, where T sets a temperature scale at which entropy contributions from
the degrees of freedom not explicitly retained in the effective Hamiltonian become important.

Finally, the model (28) is obviously too simple to describe the finer details of RUM
systems. For our purposes, however, it captures the essential physics.

We now want to calculate the size of the GI in RUM systems as modelled by our
effective Hamiltonian (28). As explained in the previous section, we do this by determining
the validity of the best classical approximation. In our case this is the ‘independent-mode’
{IM) approximation in the sense of [8], since our systems are near the soft-mode limit, In
fact Eiseariegler [15] found that the IM approximation becomes exact in the limit s — 0.
The results of the IM approximation, which provides a simple picture of the phase transition
in terms of phonon softening, are summarized in appendix 1.

In order to establish the limits of validity of the M approximation, we proceed as
follows. We check the internal consistency of the IM approximation by determining how
well it obeys the exact fluctuation-susceptibility relation given in appendix 2 in (A2.2).
We derive the corresponding criterion for determining the lower boundary of the Gt (which,
incidentally, has the same functional form as the one derived by Bruce [8] within a different
approach) in appendix 2. We denote by g the order parameter @ normalized to its value at
zero temperature Qo:

q(T) = @(T)/ Qo (29)

and by gc the valve of this normalized order parameter at the lower boundary of the GI. The
corresponding lower boundary temperature T of the GI is related to gg via the IM equation
of state {A1.6):

To = TM(1 — g&)/e(gl). (30)

Here we have used the definition (A1.7) of the function c¢(g?), and the temperature T is the
lower stability limit of the disordered (high-temperature) phase within the IM approximation.
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This is not quite the IM transition temperature itself becanse the IM approximation predicts
(incorrectly} a slightly first-order iransition at a temperature above 7M. With this notation,
our criterion is (see (A2.11) in appendix 2)

3T JM ] 1
i 1
4TM 57 N Z (g + J(k)/2sJ)? < 31

where /™ is an effective coupling constant obtained by a suitable average over the J(&)
as defined in (A1.9).

The model] effective Hamiltonian (28) is characterized by the four parameters 8, J, s
and ¢. The effect of 8 and J can be absorbed into a rescaling of temperature and order
parameter, and we are left with the two, by now familiar, dimensionless parameters s and €
characterizing the model. Since we are modelling displacive anisotropic systems, we expect
both of these parameters to be small compared to unity, as spelled out in (17) and (18). Cur
calculations will yield g3 as a function of these two parameters 5 and €. This quantity can
be related to the size of the GI on the temperature scale as follows. As mentioned above,
we copnfine our attention to the part of the GI below the trapsition temperature, which can
be expressed as

Alg=T.— T (32)

where 7. is the true transition temperature. If we normalize ATg by T, we can write the
inequality

AT6/T =1 —-T5/T. < g4 (33)

which can be used to convert between qé and ATg. Equation (33) is a consequence of the
inequality

g Ty21-T/T, (34)

which follows from the fact that outside the Gi the squared order parameter varies linearly
with temperature (this can be verified from the IM equation of state (A1.6) [16]), but on
further approaching 7. ‘bends down’ because the order parameter critical exponent of the
¢* model is smaller than 1/2 (see for example [R]).

For our actual calculations based on the criterion (31), we replace the inequality by an
equality of the form

3T JM 1 1
3% 77 - 35
ATM ST N Z @+ Iy 2T " 33)

where x is a constant of order unity. For the derivations of the functional dependence
of g on 5 and € we use what seems the most natural choice, x = 1; for comparison
with experimental observations in section 5 and with the results of computer simulations in
section 6, we also give the results for £ = 0.5 in order to see how variations in & affect the
value of gg.

We rewrite (35) as

3 %
4T[M

15, €)=k (36)
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where
1 1
Hglis, €)== (37)
% N g (g2 + J(k)/25 7 )
Il J
@) =m =5 L3 8

The quantity f(¢} reflects within the IM approximation the effect of the anisotropy present
in the system on the transition temperature. In fact, we have from (A1.9)

3keTM = f(e)J OF. (39)

Before proceeding to a numerical calculation of qé(s. €) directly from (36), we want
to analyse the behaviour of qé(s, €) in two limiting cases, for which we can calculate its
functional form analytically to a good approximation. The dependence of I (¢3; s, €) on g3
and the parameters s and ¢ can be estimated as follows, One evaluates the sum in (37)
by performing the corresponding integral over the Brillouin zone. Recognizing that the
integrand has the form of a smooth high-frequency cutoff function, one can replace it to a
first approximation by a sharp cutoff, setting the integrand to qg" where J(k)/2s7 < g2
and to zero otherwise. Writing dpym = | and 2 for a2 RUM line, one thus obtains

I qal,s—dnuuf:!sﬂz qé Lels @)
and

I gg’s 95 > €/s for a RUM line “h

[ xgg’s'? a5 > <fs for a RUM plane,

The dependence of [ on s and € in (40) can be summed up by saying that sach RUM direction
contributes a factor of (s/¢)'/* = &' and each non-RUM direction a factor s'/2 = £, ie.
each direction contributes a factor proportional to the inverse of the correlation length in
that direction. Equation (41) can be interpreted in the sense that the correlation length in
the RUM directions is so short that it no longer appears in the result, so that the integral 7
effectively behaves as for a two- or one-dimensional system.

If we now consider the prefactor f(¢) in (36), defined in (38), we recognize that for
¢ = 0, the integrand in (38) has a singularity at & = 0 which makes the integral divergent;
f must therefore tend to zero as € — 0. By considering the behaviour of the integrand in
(38) near the singularities that arise as ¢ - 0 it can be shown that asymptotically

Fe) e 1/ In¢| for a RUM line @)
fle) et e for a RUM plane.

As yet, the behaviour of the factor Tg/T™ in (36), which is related to qé by the IM
equation of state (30), Tg/ Tcw ={l-— qé) /e(qé}, has not been discussed. Following an
argument by Bruce [8], one can assume that as long as qé is small, the approximation
Tg = TM is justified. In the limit of extreme anisotropy € — 0, however, T™ — 0 from
(39) and hence the factor T/ 7™ can become large if the predicted value of g2 lies in the
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temperature region above T.™ where the IM still predicts the existence of a stable ordered
phase. In this case it will be more convenient to consider the product

3kpTs
J Qg

T
HOF-& (43)

because in the limit ¢ — 0, Tz = T(qé) is just given by the low (two- or one-dimensional)
limit of the M equation of state (30) and is no longer a function of ¢,

Using the analytic estimates (40), (41) and (42), we now analyse the behaviour of g3
in the two following limiting cases. First, consider the }imit ¢ — O at constant 5, which
comresponds to a vanishing of the correlation length in the RUM directions, & — 0. In this
limit, one obtains an ensemble of uncoupled planes or lines (in real space) for a RUM line
and plane, respectively. The dimensionality of the system is effectively reduced to two and
one, respectively, and one expects a large Ginzburg interval, Indeed, from (36) we obtain
that qé becomes large in this case since the divergence of the integral in (40) as € — O is
stronger than the approach of f to zero given by (42). This argumnent holds as long as ¢ s
not too small so that the assumptions 75 &~ T.M and qé % ¢/s are fulfilled. For values of ¢
considerably smaller than s, the second assumption is violated, and the integral / becomes
independent of € according to (41). Likewise, T™ will tend to zero, leading to a violation
of the first assumption; at the same time, however, the prefactor (43) becomes independent
of ¢ as explained above, As ¢ — 0, qé must therefore eventually tend to a constant value,
which it should reach for values of ¢ well below 5. Physically, this corresponds to the
fact that when ¢ < s, the correlation length along the RUM directions becomes typically
much smaller than one lattice unit, reducing the system to a collection of uncoupled two-
or onc-dimensional subsystems, with the effect that the size of the GI reaches its limiting
lower-dimensional value and is no longer affected by a further increase in the anisotropy.
To summarize, in the first limiting case (¢ — 0, s = constant) the GI becomes independent
of € for ¢ &« s, both for a RUM line and a RUM plare. This e-independent limiting value
of the G1 is fairly large even for very displacive systems, as the numerical results presented
below will show.

The second limiting case of interest is s — 0,¢ — 0 with s/¢ = constant. This
corresponds to the limit of an infinite correlation length in the non-RUM directions (£, — 00),
which can be thought of as arising from completely rigid units, with a fixed correlation length
along the RUM directions (§; = constant). For a RUM line, one obtains from (36)

95 « F2(e). (44)

One can verify that this is indeed the sclution of (36) using the fact that f(¢} » Oase - 0
and hence gZ — 0. This implies from (40) that I/s  g5'(s/6)'/* « g5', and from (30)
together with ¢(0) = 1 (see (A1.8)) that Tg — T, reducing the left-hand side of (36) to
f(€)/qs = constant as required. For a RUM plane, on the other hand, one obtains from
(36) that

qé ~2 constant. 435

To verify this solution we observe that from either (40} or (41) one has I /s « s~Y2 for
given qé and constant s /¢ and hence f(¢)I/s o (¢/5)/* = constant from (42). Estimating
the dependence of c(qé) on s and € in a way analogous to the estimates for 7 given in
(40) and (41), one can also show from (30) that Tg/T™ = constant; the left-hand side
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of (36) is thus constant, as required. For the second limiting case (s — 0,¢ — 0 with
s/€ = constant) we have thus found that the GI tends to zero for the case of a RUM line,
but approaches a non-zero value in systems with a RUM plane. This means that in the limit
of an infinite correlation length along the non-RUM directions, the short-range correlations
intreduced by the presence of multiple RUMs keep the GI finite for the case of a RUM plane,
where the strongest fluctuations occur on a two-dimensional sector of wavevector space,
whereas their effect is suppressed and the system behaves entirely classically for a RUM line,
where fluctuations are confined to a one-dimensional set of wavevectors. This agrees with
the general statement that the effect of fluctuations depends strongly on the dimensionality
of the phase space region where they occur.
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Figure 3. Size of the Ginzburg interval in RUM systems as a function of displaciveness s and
anisotropy €. Shown is the value of qé, the square of the normalized order parameter at the
lower boundary of the Gi, as a function of ¢, with 5 determined 2s follows. (a) and (b): Fixed
§, corresponding to a fixed correlation length &, along the non-ruM directions, for systems with
a RUM Jine and plane respectively. (¢) and (d): Fixed s /¢, corresponding to a fixed comelation
length & along the RuM directions, again for a RUM line and plane respectively. Equation (33}
can be used to convert from qé to the size ATg of the GI on the temperature scale.

We now present the results of numerical calculations of qé(s, €). These results were
obtained by directly solving (36) for q% by numerical integration and hence do not involve
any of the approximations made above in the analytic treatment of the limiting cases. We
remind readers more used to seeing the size of the GI expressed in terms of a temperature
intervat of the relation (33), which can be used to convert from the order parameter (qé)
to the temperature (ATy) scale. In figures 3{(a) and 3(») we show for the case of a RUM
line and plane, respectively, the dependence of gZ on ¢ for fixed values of 5. This form
of presentation confirms the results of our analysis of the first limiting case above {¢ —+ 0
at s = constant). The initial increase of qé with decreasing ¢ can clearly be seen, and qé
attains a constant value for € <« 5. This limiting value depends only weakiy on s and is,
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even for a very displacive system (s = 0.01}, sufficiently large to be detected experimentally
in a corresponding real system. In figures 3(c) and 3(d) we have plotted, again for the case
of a RUM line and plane respectively, the dependence of g2 on ¢ for fixed values of s/e.
‘We can thus confirm our results obtained above for the second limiting case s — 0,¢ — 0
at /¢ = constant. For a RUM line, qé - 0 as ¢ — 0, whereas for a RUM plane, qé tends
to a constant in the same limit.

Altogether, our results show that the GI in RUM systems is not necessarily always small
and can, in fact, be large. The application of our theory to real materials in the next section
will show, however, that typical ‘real-wotld’ values for the parameters s and ¢ nevertheless
yield relatively small G, of the order of ATg/T. < qé 2 0.1 or less.

5. Application to real materials

In this section, we make quantitative comparisons between the theoretical results of section 4
for the size of the GI and experimental observations on real materials. We consider the two
perovskites SrTi0Oy and LaAlOs (which have a framework structure of octahedra joined by
shared oxygen atoms), and the ‘cogwheel’ structure K:SeQs. We also give qualitative
estimates for quartz and cristobalite, which are examples of framework silicates,

The choice of the three materials for the quantitative calculations was based on the
availability of experimental data in two respects. It had to be possible to determine the GI
from the measured temperature dependence of the order parameter or the specific heat, and
data on the temperature dependence of the soft mode and the dispersion in its environment
in &-space bad to be available in order to allow a meaningful input of data into our model.

The perovskites SrTiO; and LaAlO; both undergo displacive phase transitions, at
temperatures around 105K and 800K, respectively [17). In both cases, the atomic
displacement pattern in the ordered phase corresponds to rotations of the perovskite-typical
octahedra (TiOg and AlQg, respectively) with opposite signs in neighbouring unit cells,
corresponding to a soft mode at the corner point R of the Brillouin zone. In SrTiOs,
the rotation is around one of the cubic axes, leading to a tetragonal structure in the low-
temperature phase, whereas it is around a body diagonai of the cubic unit cell in LaAlQ;,
resulting in a trigonal symmetry of the ordered phase.

In the application to real materials, the field ¢ in our model effective Hamiitonian
corresponds to the specific combination of atomic displacements that occurs in each unit
cell during the phase transition. Assuming that the atomic displacement patterns of the
Fourier modes ¢(k) correspond to actual phonons occurring in the real material, we will
model the dispersion of the ¢(k) on that of the corresponding real phonons.

As explained in section 4, we only need to know the parameters s and ¢ of our model
effective Hamiltonian (28), i.e. the values of A = sJ, J and ¢, in order to determine the
size of the GI relative to the transition temperature.

For S81TiOQs, this quadratic part was obtained from experimental data as foliows. The
dispersion of the three phonon branches containing the threefold degenerate soft mode at
the R point was taken from [18, 19] in the form of the dynamical matrix

Rij(k) = [a(T) + AME* + FEDIS;; -+ Mk k(1 — &) (46)
with

A=216+20 (THzA)?  F=-097£001 & =0190.04. “7)
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Neglecting the off-diagonal elements, which give a small relative second-order frequency
shift of the order of h2/1f] = 0.04, one obtains, with a value for the lattice constant of
SrTi0; of a = 3.9 A [20], the model parameter values

J = 2)/a* ~ 28 THZ? e=1+F=003£00L (48)

The parameter A = sJ was obtained from the measured soft-mode frequency above
T. as follows. The measurements by Cowley and co-workers [21] yield a linear
temperature dependence of the soft-mode frequency squared above Tg, which extrapolates
to approximately —1.2THz2? at zero temperature, Hence A was determined from the
requirement that, for the given values of J and ¢, the soft-mode frequency predicted by the
M approximation extrapolate to the same value at T = 0, with the result A = 2,0 THz?,
The displaciveness parameter 5 is thus s &~ 2/28 = 0.07.

We now obtain with this input from the IM criterion (36) the value of g2, the square of
the order parameter (normalized to its value at zero temperature) at the lower boundary of
the GI. Inserting the extreme values of the anisotropy parameter, ¢ = 0.02 and 0,04, and
choosing « = 1 and 0.5 we find

. [009-012 k=1

= 49
%=1025-029 =05 (49

In view of the rather pronocunced dependence of these results on «, no detailed analysis
of the effect of the uncertainties in the values of A and J was carried out.

The above theoretical results can now be compared to the experimental observations
by Mueiler and Berlinger [17). They found a lincar dependence of Q7 on temperature for
0.7 € T/T. £ 0.9 which extrapolates to zero at T = 1,05 T, whereas for 0.9 < T/T. £ 1,
Q*(T) deviates from a straight line; the authors conclude that the Gl is of the order 0.17.
The above results (49) agree quantitatively with this observation. The approximately linear
dependence of g%(T) for 0.7 € T/T™ < 0.9 predicted by the IM approximation for our
model extrapolates to zero at & 1.2 T™, yielding T, & 1.2 T/M/1.05 ~ 1.14 T™M a5 an
estimate for the relation between the real transition temperature and the one predicted by
the IM approximation; the temperatures T corresponding to the average values qé = 0.27
and 0.105 taken from (49) for « = 0.5 and & = 1, respectively, can be calculated from the
IM equation of state (A1.6) to be 0.93TM ~ 0.817; and 1.04T™ = 0.917,, bracketing the
experimental value of 0.97; for the lower boundary temperature 7g of the G1. Note that the
inequality (33), ATg/ T, £ g, is satisfied since for both values of «

ATg T. —Tg TG,_v 1-081=0.19 0.27 _ .2
L, - T ‘1‘“?,:’”{1-0.91—_-0.09}40.105“ ¢ (9

and that g2 provides a fairly tight bound on ATg/T..

We note that the interpretation by Mueller and Berlinger {17] of the experimentally
observed size of the GI is different from ours. They use the traditional Ginzburg criterion
for isotropic systems to find a zero-temperature correlation length in the sense of {6,7] of
& = 1.36nm, i.e. in lattice units & /a = 3.3, and interpret this as a short-range correlation
between octahedra at equivalent positions in the ordered phase which has a lattice constant
of 2a.

Ginzburg [22], on the other hand, estimated a zero-temperature correlation length &y
greater than five lattice units for $1TiO; and concluded, again from the isotropic Ginzburg
criterion, that the GI should be experimentally unobservable.
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Qur interpretation takes account of the strong anisotropy caused by the existence of
RUM lines. In the direction perpendicular to the RUM lines we have a correlation length
of approximately &, = s~!/? & 4.8 lattice units, in agreement with Ginzburg’s estimate
and in contradiction to the Mueller and Berlinger result of short-range correlations. Along
the direction of a RUM line, however, the correlation length is approximately given by
& = €'/2,, hence smaller by a factor of €%/ A~ 0.14-0.2 and thus of the order of one lattice
unit. As our calculation shows, the GI is determined by both these correlation lengths and
the inherent anisotropy of the correlations cannot be neglected.

We now turn to the case of LaAlOs. In this material, the displacement pattern in the
ordered phase is a rotation of AlOg octahedra about a body diagonal of the cubic lattice,
corresponding to a linear combination with equal weights of rotations around the cubic axes
x, y and z. The bare phonon spectrum, taken as a whole, is again very anisotropic with RUM
lines in the k,, k, and k, directions along the edges of the Briliouin zone. However, these
RUMs involve rotations about the x, y and z axes respectively, and thus do not correspond to
the order parameter of the actnal transition. Our one-component model (28) of section 6 only
involves fluctuations of the latter, with other phonons being irrelevani. Since the observed
order parameter contains all three rotations equally, it would seem that we need to take an
isotropic model. The lack of anisotropy in the fluctuations has been observed experimentally
by Kjems and co-workers [23] who have already alluded to a similar explanation,

From the data of [23] the model parameters A = sJ, J and ¢ were obtained in the
same way as for the case of SrTiO; above. The soft-mode branch dispersion around the R

point is observed to be w? = Ak? with A = 2000 meV A” for all three soft-mode branches,
yielding € = 1 and, with the lattice constant a = 3.79A [24), J = 21/a? = 280 meV?. The
observed linear temperature dependence of the square of the soft-mode frequency (denoted
by w2, in [23]) above the transition extrapolates to approximately —S57 meV? at T = 0,
and the corresponding value of the parameter A was found to be A & 95 meV?, leading to
5 A2 95/280 ~ 0.34,

The calculated values of g2 for these model parameters are, again for ¥ = 1 and « = 0.5:

2 {0.09 k=1 51)

6= 1028  «k=05.

The close similarity of the g2 values obtained for SrTiO; and LaAlO; agree well with
the experimental observation by Mueller and Berlinger [17], who found that the dependence
of the order parameter on temperature (measured on the scale of the transition temperature)
in the two materials—and hence the size of the GI relative to 7,—was strikingly similar.

While our considerations cannot, of course, explain why the parameters for the dispersion
in the two perovskites we have considered conspire with differing degrees of anisotropy to
give the same size of the GL, the above comparison shows that our calculations take correct
account of the influence of anisotropies on the size of the GI and that the results agree well
with experiment.

We have already shown in section 1 that the idea of RUMs can be extended to cogwheel
structures in which the rotations of adjacent rather rigid units are coupled through steric
hindrance between them. The A;BX4 family of compounds provide a good example [25].
Many of them undergo phase transitions in which all the BXs units (which present a
triangular profile in the yz plane) in the same yz layer rotate together in the same sense [25].

This rotation about the x axis is the major component in the order parameter of the
incommensurate phase transition [25]. For KzS8e0Qy, the observed [26] and calculated [25, 27]
phonon spectra are very anisotropic, with an anisotropy ratio nearly as great as in SrTiO;
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above, Thus we can apply the RUM phonon model of section 2, in particular equation (25),
for a RUM line describing softish phonons along the k, axis with hard phonons everywhere
else.

We can make estimates of the quantities A = s.J, J and ¢ for K;8e0;, as follows, We
note from [25] that the overall width of the phonon spectrum from Raman spectroscopy
and computer simulations is 162cm™~!, excluding internal optic modes of the BX, units,
which are treated as rigid. This width includes optic vibrations of the K* ions against
the ScOi" ions and we therefore reduce our width rather arbitrarily to 125cm™!, giving
2J = 15625cm™2. For the soft-mode RUM band we adopt the revised computer model
of [27] and on the positive @? side we include the non-acoustic part near k = 0, giving a total
RUM bandwidth from =31 cm™" to +33em™, i.e. of 2¢J = (31?+33%}em™% = 2050cm™2.
The value of A = sJ is the negative w? of the bare soft mode, which from the phonon
model in [28] is A = 960cm™2. This seems more reliable than the value A = 1600cm™2
of the earlier phonon model [25). The value A = 960cm™2 is also reasonable because it
is somewhat larger (as it should be) than the extrapolation of the observed w? from above
T, down to T = 0 which gives |w?(extrapolated)] = 630cm™2 [25]. These estimates are
probably as good as can currently be made; in particular, we note that the RUM branch
does not soften uniformly as a whole [28], unlike our model. With these reservations
therefore we have 5 &~ 0.12 and € = 0.13. From figure 3(¢) we can then simply read off
g&(c = 1) = 0.08 and, with the wransition temperature T. = 130K, a Ginzburg interval
Alg € qéTc 2 10K. The specific heat data from [29] gives AT & 5-10K, which we
consider to be reasonable agreement.

We end this section by qualitatively considering quartz and cristobalite. Our motivation
is that they can be taken as representative of silicate framework structures with tetrahedral
8i0y4 units, for which the RUM model was originally developed. Both quartz (see for
example [30]) and cristobalite [31] bave a first-order transition (whereas our model gives
a second-order transition), and the square of the order parameter does not vary linearly
with temperature outside the Gi as our model predicts. Hence no direct comparison of the
theoretical results given below with experiment is possible. 'We may simply take our values
of s and ¢ as well as the calculated ATg/T; < qé as typical of what might be expected in
tetrahedral framework silicates. Due to the lack of experimental information, we base our
theoretical estimates on computed phonon spectra.

We have calculated phonon spectra for the 8 phases of quartz and cristobalite using
the interatomic potentials of [32]. These required the use of the ideal structures, which
are probably not fully realized in the real situations owing to the apparently shortened Si-
O bonds. Accordingly we have also incorporated recent inelastic neutron scattering data
for quartz [30]. In the case of quartz we calculate from the bare frequency at k = 0 a
value of A = 57 = 6 THz2. The experimental value is of the order of 1.5 THz?, found by
extrapolating the data of [30] to 7 = 0 K. The RUM bands extend to 0, 2.5 and 4 THz? along
the RUM lines in the A, T and A directions respectively. If we take an average of these
values, and use the experimental value for A, we obtain an estimate for 2¢J = 3.5 THz?,
giving a value for the ratio of s/e¢ of order unity. We estimate a value for 2J as given
by the range of phonon frequencies excluding the modes invelving Si-O stretch motions,
which gives 2J = 130 THz?. Thus we have 5 ~ ¢ =~ 0.025. We stress that these are only
rough estimates, but we believe that they will be appropriate for other silicates such as
cristobalite.

Quartz is an example of a system with lines of RUMs. Using our estimates for s and ¢
we read from figures 3(a) and (c) the result ATg/ T, < g5 ~ 0.045, which with T, = 858K
gives a value for ATg of about 40K,
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Cristobalite is an example of a system with planes of RUMs [4, 14, 33]. From figures 3(b)
and 3(d) we note that for a constant vaiue of s/¢ the size of gg is fairly insensitive to the
value of s (or equivalently to €). Using the same values of s and € as we used for quartz,
we obtain g% = ATg/T. ~ 0.1. The transition in cristobalite is strongly first order, so it
is not clear whether the value for T, should be the actual transition temperature (530 K) or
the temperature that appears in the quadratic term of the Landau free energy (230K), i.e.
the point towards which the order parameter susceptibility will diverge. These give values
for AT of about 50K and 25K respectively, but in any case it should be noted that the
discontinuity in the order parameter at the transition is larger than our estimate of gg.

The sizes of the Gt we have estimated for quartz and cristobalite are larger than we had
initially expected [3,4]. Our estimates, though, are subject to error, perhaps as large as a
factor of 2-3, but probably not large enough to allow the size of the Gl to become vanishingly
small. However, large values for the GI might suggest that the first-order transitions in these
systems could be valid examples of fluctuation-driven first-order transitions (I P Swainson,
private communication).

It is worth commenting that in all the materials discussed above we have s of the order
of 0.1. This seems to be typical of the ratic of Coulomb forces which are active in RUMSs,
to the atomic hard-core repulsions which come into play in non-RUMs. The value of 5
can be related to the coefficient & in the Landau free energy (1) by a slight reworking of
renormalized phonon theory (V Heine, unpublished) and it can be checked that s = 0.1
does indeed comrespond to the values of « typically found in soft-mode phase transitions
(R Currat, private communication).

6. Comparison with computer experiments

In order to confirm our results from section 4 for the size of the Ginzburg interval in
RUM systems over a wider range of model parameters than that covered by real materials,
computer simulations of the system described by the effective Hamiltonian (28) were carried
out in the displacive anisotropic regime (s, ¢ <€ 1) relevant for the description of RUM
systems.

From the ‘experimental’ results of these simulations, the GI was determined by
comparing the observed temperature dependence of the order parameter with the predictions
of the IM approximation and identifying the order parameter value at which the agreement
became unsatisfactory. Given that it is expected that the computer experiments will begin to
see the finite sample size at temperatures close to the transition temperature, the agreement
between the simulations and the results of the IM model will provide an upper bound on the
value of the GI rather than the actual size of the GI.

The ¢* Hamiltonian (28) has been used extensively as a standard model for phase
transitions and has, of course, been investigated by computer simulations before. In
particular, Schneider and Stoll [34, 35] have performed extensive studies of the isotropic ¢t
model in two and three dimensions, focusing on critical behaviour and dynarmical aspects.
Kerr and Bishop [36] have studied an extremely anisotropic two-dimensional model, again
with an emphasis on the model dynamics. Padlewski and co-workers [37] have studied the
crossover from order—disorder to displacive behaviour in the isotropic ¢* model.

The simulations were carried out on the AMT distributed array processor (DAP) in
Cambridge, which has 4096 processors. The simulated sample was a 16 x 16 x 16 cubic
lattice, on which periodic boundary conditions were imposed in order to eliminate surface
effects as far as possible. A microcanonical ensernble was used; thus the equations of motion
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for the fields ¢; were just the Newtonian equations of motion that result when the effective
Hamiltonian (28} is treated as a classical potential energy. The numerical integration of these
equations was performed using the leap-frog Verlet algorithm, as described in [38, 39].

Two series of model parameters were studied, separately for the case of a RUM line and
plane:

(5,¢) =(0.05,1) (0.05,0.1) (0.05, 0.01)

52
(5,6)=(5.1) (0.5,0.1) {0.05, 0.01). G2

These two series correspond to the approach to the two limiting cases discussed
in section 6. In the first series, s = constant and ¢ decreases, implying that the
correlation length &, along the RUM directions decreases towards zero; in the second series,
5/e = constant and 5 — 0, corresponding to the case where the correlation length &, along
the non-RUM directions becomes large. We remark that the first parameter set (s = 5,¢ = [)
in the second series of (52) actually corresponds to a non-displacive isotropic system, which
we do not expect to be a good mode] for real RUM systems and for which our analysis in
terms of the IM as the best classical approximation is not strictly valid. We nevertheless
included this case to make the overall trend in the second parameter series more obvious.

The results for the order parameter as observed in our simulations are shown in figures 4
and 5, together with the predictions of the iM approximation and the GI as calculated from
(36) for ¥ = 0.5 and 1. The first series of model parameters is shown in figure 4, and the
second one in figure 5. Note that in the temperature region where the IM equation of state
(AL.6) has two solutions for g%(T), the lower branch is unstable, and the upper branch is
only metastable above the first-order transition predicted by the IM approximation. Also
note that we worked with units in which J = Q(z, =land kg =1.

It can clearly be seen that the agreement between the computer experiments and the 1M
predictions is satisfactory outside the calculated GI, especially when it is taken into account
that no fitting parameters or correction factors for finite-size effects have been introduced.
Inside the calculated Gi, on the other hand, deviations between the IM predictions and the
computer experiments occur as expected.

We further exploited the results of the computer experiments in order to see how well
the size of the Gl, determined from the temperature dependence of the order parameter,
correlates with what one would obtain by analysing other observables of the system. As
these other observables we chose the squared renormalized phonon frequencies at five
specific wavevectors, which were measured as a function of temperature and compared to
the best classical, i.e. IM approximation, predictions. The results, which we do not present in
detail here, show that indeed the size of the GI determined from the renormalized frequencies
correlates well, at least qualitatively, with that determined from the order parameter.

In conclusion, it can be said that the computer experiments support the theoretical
analysis of section 4 for the size of the GI in systems deseribed by the effective Hamiltonian
(28) which we used to model the characteristic features (displaciveness and anisotropy) of
RUM systems.

Although the simulations presented here were aimed at studying a different region of the
parameter space of the ¢* model than that investigated by Padlewski and co-workers [37),
the results have some bearing on their conclusion that the ¢* model exhibits classical
behaviour only in the double limit of displaciveness and long interaction range, In fact,
the results for the most displacive isotropic system studied above (s = 0.03, ¢ = I; see the
top graph of figure 4) show that classical behaviour is obtained for pure nearest-neighbour
interactions if the system is displacive enough. The discrepancy with the conclusion of
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Figure 4. Square of the normalized order parameter g2 as a function of temperature T, as
measuered in computer experiments (diamonds) and as predicted by the 1M approximation (full
curves). The ¢ can be read off as the temperature interval where large discrepancies occur,
The horizontal dotted and broken lines indicate the theoretical values q%- for q2 on the lower
boundary of the GI as calculated from (36) for ¥ = 0.5 and 1 respectively, Shown, from top
to bottom, are the first parameter series from (52), both for a RUM line and a RUM plane as
indicated. For € = 1, one has only an isolated RUM.

Padlewski and co-workers can be attributed to the fact that they investigated systems with
(in our notation) s > 1.5, which are not displacive enough to exhibit classical behaviour
for short-range coupling.

7. Summary

We have analysed the Ginzburg interval (GI) in soft-mode phase transitions using the rigid
unit mode (RUM) picture. This applies to framework structures of relatively stiff units
linked by shared corner atoms, and to ‘cogwheel’ structures where the rotations and/or



3192 P Sollich et al

1 s=05 | 1 s=0.5
e=0.1 e=0.1
. WUM plane

RUM line

0.0 0.2 04

Figure 5. The analogue of figure 4, for the second model parameter series from (52).

displacements of units touching one another are linked due to steric hindrance. The essential
features of RUM systems are displaciveness, i.e. closeness to the soft-mode limit (s < 1) and
anisotropy (€ < 1) or, equivalently, the presence of two very different correlation length
scales. We have found that the magnitude of the GI relative to the transition temperature
can in principle have any value, from large to very small. The actual value depends on
the balance of s and € as well as on the dimensionality of the RUM sector in k-space; in
particular, in the limit of infinitely rigid structural units, the GI is zero for a system with a
RUM line but finite for the case of a RUM plane.

The results of the theoretical analysis were found to agree with the results of computer
simulations and experimental observations on the framework perovskites SrTiQ; and
LaAlQ; and the copwheel structure K,8e0Q,. Qualitative estimates of the model parameters
and the size of the GI for framework silicates were also given, using quartz and cristobalite
as examples. We found in all these cases a GI ATg of the order of 0.17; or less, a value
which is, as expected, considerably smaller than in typical order—disorder phase transitions
(see for example [8]).
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In conclusion, it is worth emphasizing that although the inherent anisotropy of RUM
systems can in principle lead to a large GI, this effect is countered by the fact that almost all
the real materials that we have considered are very displacive, i.e. close to the soft-mode
limit, leading to a fairly small G1. Further investigation is needed to clarify the extent to
which this reflects the behaviour of real materials in general.

Appendix 1. Results of the IM approximation

In this appendix we summarize the results of the IM (independent-mode} approximation
as applied to our model effective Hamiltonian for RUM systems (28). For more details
on the IM approximation, we refer the reader to [8, 15]. We emphasize that all results are
obtained from classical statistical mechanics without taking quantum mechanical corrections
into account.

The IM approximation considers the class of ‘trial Hamiltonians® that are quadratic in
the deviations of the ¢; from their mean values ¢; = (¢, ):

Ad =g — &;. (A1.D)

These ‘trial Hamiltonians® can be written in the form
1
™ 2
=~ K{k)| Aok Al2
2 Ek (k)| Ag (k)| (Al.2)

and thus decouple the different Fourier modes A¢(k) of the sysitem, treating their
fluctuations as independent. Since we have set the mass scale to unity, we can identify the
K{k} with the renormalized frequencies (within the IM approximation) of the corresponding
phonon modes:

K (k) = ol (k). (A13)

By minimizing a ‘trial free energy” which is an upper bound for the true free energy,
the IM approximation establishes the trial Hamiltonian that best approximates the behaviour
of a system described by the exact Hamiltonian (28).

Assuming as in our model that J(k) has its minimum at & = 0, the ordered (low-
temperature) phase is uniform and can be characterized by an order parameter Q such
that

}:q‘:, <¢(0)) (A14)

If we further use the fact that for J(k) as defined in (25) and (26) we have J(0) = 0, the
results of the IM approximation can be written as foilows.
In the ordered phase (@ # 0)

K(k) = J(k) +25sJg* (A1.5)

where g == Q/Qp is the order parameter normalized to its zero-temperature value given by
Q% =5J/B. The value of ¢ as a function of temperature is determined as the solution of
the equation

= (T/T™)e(g?) (AL6)
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where
1 JM
2
= — _— Al7
‘@)=5 ; T + 2572 (ALT)
is a decreasing function of its argument with
c(=1 (A1.8)
and we have further used the definitions
1 1 1
3k TIM=JIM 2 e _— .
BT X T N;J(k) (AL9)

Here T™M is the lower stability limit of the disordered phase within the 1M approximation;
however, the equation of state (A1.6) admits stable, or at least metastable, solutions with
non-zero Q up to a temperature 7 > TM, and the IM approximation actually predicts
a first-order transition at a temperature between TMM and Tf“, where the free energies of
ordered and disordered phase become equal.

In the disordered phase (@ = 0), K'(k) has to be obtained self-consistently from

K(k) = —s5J + J(k) + 3sJ A%/ 03 (A1.10)

where
1 1 -
A= Zf (Ag)") = kaT §k:(z<(k)) : (AL11)

measures the local fluctuation of the fields ¢;.

We remark that the M approximation predicts a temperature-dependent shift of the
phonon spectrum that is uniform across the Brillouin zone, since the difference between the
squared renormalized frequencies, K (k), and the squared bare frequencies, —sJ + J(k), is
independent of k& in the ordered phase (A1.5) as well as in the disordered phase (A1.10).
The scale of this frequency shift is set by sJ = A, as can be seen from (A1.5), (A1.10)
using the fact that ¢% and A%/Q32 are both of order unity or less.

Appendix 2. Limits of validity of the IM approximation

in order to calculate the size of the GI, we now want to establish a criterion for validity
of the IM approximation when applied to the effective Hamiltonian (28). As discussed in
sections 3 and 4, the limit of validity of the ™ approximation determines the size of the
Gl since the IM is the best classical approximation available for the effective Hamiltonian
(28} in the displacive regime that we are interested in. According to our general remarks
in section 3, we restrict our attention to the validity of the IM approximation in the ordeted
{low-temperature) phase.

We determine the limits of validity of the IM approximation by checking its consistency
with the exact relationship between the susceptibility of the local order parameter ¢; to a
linearly coupled external field, and the fluctuations of the ¢;. We denote the external field
at site j by #; and define the susceptibility as

Xij = 8y /3h;. (A2.1)



The Ginzburg interval in rigid unit mode systems 3195

In Fourier space, the exact relation between this susceptibility and the fluctuations of the ¢;
is then

1

x (k) = ol (tag (k)P (A2.2)

where we have used the definition
1 .
Ky = > x(k)explik - (ri — 7)] (A2.3)
&

for the Fourier transform of the susceptibility. The right-hand side of (A2.2) is, from the
simple form of the ™M Hamiltonian (Al.2), simply equal to 1/K (k). The left-hand side
can be evaluated by introducing the coupling term — 3, /;¢; into the original Hamiltonian
(28) and then calculating the ¢; for infinitesimal fields &; within the IM approximation. One
obtains [15, 16] as the analogues of (AL.5), (Al.6)

K(k) = —sJ + J(k) + 357 (¢* + AD/ 0} (A2.4)
with $2 = (1/N) 3., 7, and

STGBAY Q% — Vi +5I8 /03 + Y Jyds = k. (A25)
i

In writing these equations we have used the Fourier transform J;; of J(k) defined in a way
exactly analogous to (A2.3).

By raking the derivative of {A2.5) with respect to the external field #; and afterwards
setting all external fields to zero, one can derive that in the ordered phase

2
(x(k) ™" = K (k) + J(k)GSqu?i%Z— (A2.6)
where from the definition (A1.11) of A% and (A2.4), one has
_ kT 1
TN L —sd 4 J(K) + 357(A2 + ¢2)/ Q2

A? (A2.7)

which implicitly defines A2 as a function of ¢, From (A2.6), one sees that the exact
fluctuation-susceptibility relation (A2.2) is satisfied for all wavevectors k 7 0, but that in
order for it to hold alse for & = 0, we require

K0

dA? ;
— | —— =1 A28
'dqbz 6sJg? 3 (AZ8)
The derivative can be evaluated to be
AZ
da” _ & (A29)
dep? 1+z
where z is given by
J 34pT
o = 3 3k 1 (A2.10)

T 0 N G (i) +257g7)
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The inequality (A2.8) is therefore z/(1 4+ z) € g' or, equivalently, z < %, yielding the

criterion

37 JM

ut — 1

ATM s N ; (g2 + T (k) /257 )’ <
for consistency of the IM approximation with the fluctuation-susceptibility relation {A2.2).
In our approach to establishing the limits of validity of the IM approximation, the lower
boundary of the Gl is then determined by setting the left-hand side of the last inequality equal
to a constant of the order of unity and solving for g2 = qé, the square of the normalized
order parameter at the lower boundary of the GI.

(AZ.11)
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