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DEDUCING GROWTH MECHANISMS FOR MINERALS
FROM THE SHAPES OF CRYSTAL SIZE DISTRIBUTIONS

D. D. EBERL*, V. A. DRITS**, and J. SRODON***

ABSTRACT. Crystal size distributions (CSDs) of natural and synthetic samples
are observed to have several distinct and different shapes. We have simulated
these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a
mass balance equation, an e(lluations for Ostwald ripening. The following crystal
owth mechanisms are simulated using these equations and their modifications:
%13 continuous nucleation and growth in an open system, during which crystals
nucleate at either a constant, decaying, or accelerating nucleation rate, and then
grow according to the LPE; (2) surface-controlled growth in an open system,
uring which crystals grow with an essentially unlimited supply of nutrients
according to the LPE; (3) supply-controlled growth in an open system, during
which crystals grow with a specilied, limited supply of nutrients according to the
LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during
which the relative rate of crystal dissolution and growth is controlled by differ-
ences in specific surface area and by diffusion rate; and (5) suppér-controlled
random ripening in a closed system, during which the rate of crystal dissolution
and growth is random with respect to specific surface area. Each of these
mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a
constant nucleation rate yields asymptotically-shaped CSDs for which the vari-
ance of the natural logarithms of the crystal sizes (B?) increases exponentially with
the mean of the natural logarithms of the sizes (o). Mechanism (2) yields lognor-
mally-shaped CSDs, for which B2 increases linearly with o, whereas mechanisms
(3) and (5Fdo not change the shapes of CSDs, with B? remaining constant with
increasing a. During supply-controlled Ostwald ripening (4), initial lognormally-
shaped CSDs become more symmetric, with B2 decreasing with increasing c.
Thus, crgfstal owth mechanisms often can be deduced by noting trends in «
versus ° of CSDs for a series of related samples.

INTRODUCTION

Crystal size distributions (size versus frequency plots, or CSDs) of minerals often
have distinctive shapes which can convey information about crystal growth history
(Wagner, 1961; Baronnet, 1982). A CSD first develops during nucleation, when crystals
with sizes equal to or greater than that of the critical nucleus appear and grow in highly
supersaturated solutions. If solution supersaturation falls to a level at which nucleation
ceases, the CSD may continue to-evolve by open system erystal growth without
additional nucleation. The kinetics for this growth will be controlled either by how fast
the crystal’s surface grows given an essentially infinite supply of nutrients (surface-
controlled growth kinetics) or may be limited by the rate at which nutrients reach the
growing surface (supply-controlled kinetics). As supersaturation approaches equilibrium,
less stable crystals may dissolve, yielding material for other crystals of the same phase to
grow during a ripening process, thereby again modifying the shape of the CSD. Finally,
crystals also may grow by agglomeration with other crystals, without significant dissolu-
tion.

Attempts to model crystal nucleation and crystal growth from classical kinetic
theory have been disappointing (Ohara and Reid, 1973; Mullin, 1974; Dowty, 1980y
Kirkpatrick, 1981; Lasaga, 1982). Some workers have abandoned such models alto-
gether in favor of a chemical engineering approach that uses empirical methods,
developed from the measurement of CSDs for crystals grown in industrial crystallizers,
to describe nucleation and growth rates for minerals (Randolph and Larson, 1971;

* United States Geological Survey, 3215 Marine Street, Boulder, Colorado 80303-1066
** Institute of RAN, Pyzevskij per. D. 7, 109017 Moscow, Russia
*** Institute of Geological Sciences PAN, Senacka 1, 31002 Krakow, Poland

499



500 D. D. Eberl and others—Deducing growth mechanisms for minerals

Marsh, 1988; Cashman and Marsh, 1988; Cashman and Ferry, 1988). This approach has
been criticized because it fails to generate the detailed shapes of CSDs for many systems,
particularly over the smaller size ranges (Larson and others, 1985; Garside and others,
1976; Kerrick and others, 1991). A quantitative theory for Ostwald ripening (the LSW
theory of Lifshitz and Slyozov, 1961, and Wagner, 1961), although theoretically sound,
also is less than satisfactory in practice because predicted shapes for CSDs for ripened
minerals often do not fit actnal measurements (Chai, ms and 1975; Colbeck, 1986; Eberl
and others, 1990; Inoue and Kitagawa, 1994).

This paper presents numerical methods to simulate crystal growth and thereby to
predict the shapes of CSDs that result from several crystal growth mechanisms. These
shapes can then be used to deduce geologic history from measured CSDs for minerals.

THEORY

The lognormal distribution—The development of this method for simulating crystal
growth was inspired by the observation that the shapes of CSDs for many (although not
all) crystalline substances are approximately lognormal (Eberl and others, 1990). A
lognormal distribution is a distribution in which the logarithms of the observations (that
is, particle sizes) are normally distributed. For example, CSDs for several mineral
samples taken from the literature are fitted with lognormal curves in figure 1. The
Chi-square test (Krumbein and Graybill, 1965), which was used to compare theoretical
and simulated distributions with measured distributions, indicates that, for five out of the
six samples given in the figure, there is no reason to reject the hypothesis that the curves
are the same at a high significance level (>10 to >20 percent; see table 1). Generally, the
deviation between theoretical or simulated and measured distributions is considered to
be due solely to statistical fluctuations if the significance level is >1 to >5 percent (Exner
and Lukas, 1971). Only the CSD for the sphene sample (fig. 1D) fails this stringent test
(significance level <1 percent; table 1). Its mode is shifted slightly to the right with
respect to the theoretical lognormal curve.

When CSDs are lognormal, they are described by the equation:

00 =[ e[ g, o

where g(X) describes the theoretical lognormal distribution of X (Krumbein and
Graybill, 1965). If f(X) is the observed frequency of crystal dimension X, then alpha («)
describes the mean of the logarithms of the crystal dimension:

a =2 In (X)f{X); (2)
and B2 describes the variance of the logarithms of the crystal dimension:
= ¥[In (X} —a]*(X). (3)

Thus a theoretical lognormal distribution can be calculated if the two experimental
parameters o and 32 are known: a is a function of the mean size, and B? is a function of
the shape or uniformity of the distribution.

If instead of X, another independent variable parameter, u = X/X is used, and X is
the mean crystal dimension, then the so-called reduced lognormal distribution has the
form:
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Fig. 1. Particle size data from the literature (points), with superimposed theoretical lognormal curves

This distribution is independent of a-values; therefore, to specify the reduced
theoretical lognormal distribution of u one need know only one parameter, 2 In
comparing plots of two or more non-lognormal distributions that have different bin sizes
(that is, different data groupings), it is convenient to divide the frequencies for each
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TABILE 1

Chi-square analysis of CSDs presented in the figures

Fig. Observed Distribution// Chi? Degrees Significance
No. Expected Distribution Value Freedom Level (Percent)
1 Garnet//Lognormal 1.30 6 >20
Dolomite//Lognormal 10.09 7 10 to 20
Iitite//Lognormal 12.77 9 10 to 20
Sphene//Lognormal 411.41 10 <1
alena//Lognormal 9.78 10 >20
Ice/Lognormal 11.91 12 >20
2 3 cycles//Lognormal 27.71 4 <1
5 cycles//Lognormal 25.8 13 ltob
7 cycles//Lognormal 32.16 30 >20
4 A. 200 crystals per cycle//Lognormal 55.62 8 <1
B. Decaying nucleation//Lognormal 12.88 13 >20
C. Accef’erating nucleation//Lognormal 152.1 9 <1
5 A. Overgrowth of 4A//Lognormal 52.11 23 <1
B. Overgrowth of 5A//Lognormal 21.32 24 >20
6 A. Mean = 7.5//Lognormal 17.02 14 >20
A. Mean = 50//Lognormal 22.29 17 10 to 20
A. Mean = 100//Lognormal 29.18 19 5to 10
8 A. Open system to 7.7-mean//Lognormal 25.69 14 2.5t05.0
B. Ripened fraction 0.05//Lognormal 316.14 16 <1
11 Al Nfgan = 7.7//Lognormal 17.02 14 >20
B. Mean = 9.5//Lognormal 23.18 22 >20
13 A. Phlogopite//GALOPER simulation 31.83 7 <1
B. GALOPER simulation//Le Puy 61.29 15 <1
15 A. Zempleni//Lognormal 0.86 7 >20
A. GALOPER simulation//Zempleni 8.07 7 >20
B. RM35A//Lognormal 1.39 8 >20
B. GALOPER simulation//RM35A 21.33 13 5to 10
C. RM30//Lognormal 0.89 10 >20
C. GALOPER simulation//RM30 25.79 21 >20
D. AR1R//Lognormal 0.69 30 >20
D. GALOPER simulation//ARIR 23.24 40 >20
17 A. BZF31A-3//Lognormal 11.25 8 10 to 20
B. BZF31C-6//Lognormal 10.72 10 >20
C. BZF31C-9//Lognormal 6.65 10 >20
D. BZF31E-13//Lognormal 4.74 11 >20
18 A. Fisher calcite//Lognormal 2.34 9 >20
B. GALOPER simulation//Calcite ripened 25 h 13.5 16 >20
C. GALOPER simulation//Calcite ripened 336 h 9.65 6 10 to 20
D. GALOPER simulation//Calcite ripened 1008 h 8.99 9 >20

distribution by the maximum frequency of that distribution. Then, reduced plots
(frequency/maximum frequency plotted versus size/mean size) will coincide if the
shapes of the distributions are the same. If reduced distributions coincide, they are said to
have a steady-state shape.

Generation of lognormal CSDs by the Law of Proportionate Effect (LPE).—We are aware of
only one way to generate a lognormal distribution by growth of linear crystal sizes and
that is by the Law of Proportionate Effect (LPE; Kapteyn, 1903; Koch, 1966, 1969).
According to the central limit theorem, the familiar normal (bell-shaped or Gaussian)
distribution can be generated by addition of small, independent, random variables to a
quantity. Crystal growth can not be governed by such a random process because CSDs
are poorly represented by normal distributions (Randolph and Larson, 1988). A lognor-
mal distribution can be generated similarly by adding such random variables to the
logarithm of a quantity. However, during crystal growth we are measuring the growth of
a specific linear dimension in a crystal and not its logarithm. Therefore, the lognormal
distribution needs to be generated directly from growth of the crystal’s dimension.
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As is demonstrated in app. 1, the lognormal distribution is generated directly by the
equation for the LPE:

Xj+1 = X_] + erj’ (5)

where, for this discussion of crystal growth, X is some specified dimension in a crystal,
and ¢; is a small, randomly varied number. The form of the distribution of €s is irrelevant
to the final distribution as long as ¢; varies independently from X;. Xj, is the new crystal
dimension after one calculation cycle. In terms of crystal growth, the equation states that
the rate of growth (per calculation cycle) will depend on the crystal’s previous size times
the system’s variability (). The system’s variability, which includes factors such as
thermal and chemical fluctuations or heterogeneities, the presence of favorable growth
sites on surfaces, the surface area and energy of crystals, the diffusion rate, the porosity
and permeability, et cetera, all of which may be treated independently in microscopic
models for crystal growth, here is condensed into a random number allowed to vary
between zero and one. This range for ¢; was chosen because it works for simulating CSDs
for natural and synthetic systems.

Other methods to simulate crystal growth—The lognormally-shaped distributions in
figure 1 can be modeled similarly by the gamma function (Vaz and Fortes, 1988;
Randolph and Larson, 1988). CSDs having these shapes can be simulated by a cell
model in which randomly distributed grains nucleate simultaneously and grow at a
constant, isotropic rate, thereby leading to a Voronoi partition of space (Vaz and Fortes,
1988; Weaire and others, 1986). Other approaches use cellular or Johnson-Mehl
simulations (Mahin and others, 1980; Frost and Thompson, 1987) and spiral growth or
surface nucleation growth (Nielson, 1964; Nordeng and Sibley, 1966). These and other
models that assume constant growth rates (Joesten, 1991; Kerrick and others, 1991) fail to
simulate size dependent growth and growth dispersion (discussed below), processes that
have been observed in crystal growth experiments. Therefore they do not adequately
describe crystal growth in many real systems.

Size dependent growth and growth dispersion—Crystals of different sizes may grow at
different rates, even though they exist in the same supersaturated solution. During this
type of growth, large crystals almost always grow faster than small crystals (Mullin, 1974;
Randolph and Larson, 1988). Also, crystals that initially have the same size and that sit
side by side in the same solution may grow at different rates (White and Wright, 1971;
Randolph and White, 1977; Jancic and others, 1984; Randolph and Larson, 1988),
These processes, termed size dependent growth and growth dispersion, are embodied in
the LPE (eq 5). Such processes may occur in natural systems. Nordeng and Sibley (1966),
from a study of cathode luminescent zones in ancient dolomite crystals, conclude that the
growth rate equation is dr/dt = kr, where r is the crystal radius, t is time, and k is the rate
coefficient. They indicate that the observed dependence of growth rate on crystal radius
could result from spatial variations in k. Thus their empirically determined growth rate
(kr) is analogous to that found in the LPE (eX)).

The chemical reasons for size dependent growth and growth dispersion are unclear,
but there has been speculation that size dependent growth could result from a greater
proportion of defects on the surfaces of larger crystals, leading to an increase in average
growth rate (Garside and others, 1976). However, if the LPE is the governing crystal
growth law, then it is unlikely that a study of microscopic growth processes for individual
crystals will improve predictions for the evolution of CSDs. The variable in eq (5) that
drives growth is a random number, indicating complex interactions not easily described
by simple mechanisms.

CRYSTAL GROWTH IN OPEN SYSTEMS

An open system is defined here as a system in which matter is supplied to the
growing crystals by a source other than the phase under study. In other words, material is
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being added to the crystalline phase. As an example, the growth in a sealed capsule of a
crystalline phase from an amorphous phase would be considered to be an open system
with respect to the crystalline phase until the amorphous phase is completely consumed.
In a closed system, some of the crystalline phase itself dissolves to supply material to
other crystals of the same phase that are growing during a ripening process; therefore,
the mass of the mineral is conserved.

Surface-controlled growth. in the open system—The rate of crystal growth may be limited
either by the rate of supply of nutrient ions to the crystal surface, which is known as
supply- or transport-controlled growth (often diffusion limited), or by the growth kinetics
of the crystal itself, which is known as interface- or surface-controlled growth (Berner,
1981). In this section it is assumed that the crystals can grow as fast as is required by the
LPE (eq 5} and are not limited by the supply of nutrients.

A computer program named GALOPER (Growth According to the Law of Propor-
tionate Effect and by Ripening) was written in Microsoft Excel! macro language to carry
out these and subsequent calculations. Eq (5) was iterated for 1001 crystals for a specified
number of cycles, and the lognormal parameters « and (32 for the resulting distribution
were calculated from eqs (2) and (3). A theoretical lognormal distribution then was
calculated from these parameters (eq 1), and this distribution was compared with the
GALOPER calculated distribution using the Chi-square test (table 1). A summary of
crystal growth mechanisms and their characteristics, deduced form GALOPER calcula-
tions, is given in table 2.

Starting with 1001 erystals having a diameter of 1 nm, figure 2 shows the generation
of crystal size distributions by the LPE for 3, 5, and 7 calculation cycles. The solid curves
are the theoretical lognormal distributions, which are closely matched by the calculation
(symbols). In accordance with the theory discussed in app. 1, figure 2 and table 1 indicate
that open system growth by surface control is distinguished by two properties: (1)
convergence to a lognormal distribution of the CSD as the number of calculation cycles
increases (the significance level for the Chi-square test increases from <1 percent to a
range between 1 and 5 percent to >20 percent with increasing number of cycles; table 1);
and (2) an increase in variance (B2) with increasing mean. As the mean diameter
increases from 3.4 to 7.5 to 16.9 nm (fig. 2), B* increases from 0.12 to 0.20 to 0.26,
respectively. _

The mean size {X,,) of a CSD after a given number of calculation cycles (n} is related
to the initial mean size (X;) and the mean variability (€, which is equal to the mean
variation for € in eq 5). From eq (A8) in app. 1:

X, = X1 + & (6)

This relationship, true for open system, surface-controlled growth, is demonstrated in
figure 3, curve 1.

Simultaneous nucleation and growth—It was assumed above that all the crystals start
with the same crystal diameter (for example, 1 nm) and then grow according to the LPE
(eq 5). This assumption may be unrealistic for some systems, because crystals may
nucleate at the same time as previously nucleated crystals are growing. Unless nucleation
is very rapid, purely open system growth may begin with a range of crystal sizes inherited
from such a nucleation and growth step.

GALOPER simulates three types of continuous nucleation and growth mecha-
nisms: the first having a constant nucleation rate, and the others having decaying or
accelerating nucleation rates. The first mechanism should apply to a system in which
nutrients are continually entering a reacting volume at a constant rate, for example, by
groundwater flow or by dissolution of unstable phases. A decaying nucleation rate may

!Trade names are used for identification purposes only and do not constitute endorsement by the United
States Geological Survey.
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TABLE 2
Summary of crystal growth mechanisms and their characteristics

System Growth Mechanism CSD Shape Comments
Open  Nucleation and growth with  Asymptotic. B? increases exponentially with
constant or accelerating increase in a.
nucleation rate.
Nucleation and growth with ~ Lognormal. B? increases linearly with
decaying nucleation rate. increase in a.
Surface-controlled growth. Lognormal. B2 increases linearly with
increase in c.
Supply-controlled growth. Preserves shape of previous B? remains constant with
SD. increase in a; therefore,
steady-state reduced profiles.
Closed  Ostwald ripening (supply-con- CSD becomes more sym- Distribution maximum moves
trolled). metrical with increasing per- to the right of theoretical lo§-
centage of ripening, becomes  normal curve. Generally, B
negatively skewed, and even-  decreases with increase in .
tually approaches universal Universal steady-state profile
steady-state reduced profile. may not be reached.
Random ripening (supply-con- Preserves shape of previous A large amount of material
trolled). Also termed non- CSD. passes through solution for a
Ostwald or kinetic ripening. small increase in mean size.

B2 remains constant with
increase in «; therefore
steady-state reduced profiles.

Agglomeration. Can be pseudo-lognormal or ~ Very little material need pass
multimodal, or have other through solution for a large
shapes. increase in mean size. If most

of the crystals are involved, p?
may decrease; otherwise it
may increase.

apply, for example, to an enclosed volume in which one or more essential mineral
nutrients are limited and become depleted as nucleation and growth proceeds. Acceler-
ating nucleation may occur, for example, during the cooling of molten rock.

For the constant nucleation rate simulation, the calculations assume that a specified
number of crystals having a specified diameter for the critical nucleus appear during
each calculation cycle and then grow according to the LPE during subsequent calcula-
tion cycles. Nucleation ceases when approx 1000 crystals have nucleated. Growth
according to the LPE leads to a pure lognormal distribution, the shape of which is altered
each time new crystals are added to the system during nucleation. The lognormal shape
may be recovered approximately by surface-controlled open system growth after
nucleation has ceased.

Crystals having a critical nucleus diameter of 2.0 nm were nucleated at a constant
rate and grown in the GALOPER program with a nucleation rate of 200 crystals per
cycle (fig. 4A). This calculation yielded a mean diameter of 5.2 nm and an asymptotic
shape for the CSD typical for this type of growth mechanism. A theoretical lognormal
distribution calculated from the same data, presented as a solid line in the figure, fails the
Chi-square test (table 1), indicating that the lognormal curve differs significantly from the
calculated asymptotic CSD.

The approximate mean size after the nth calculation cycle (X,) for nucleation and
growth with a constant nucleation is given by:

| &I

X,=—[l+e" —1]. {7)

mi

n

This equation is plotted in figure 3, curve 2.
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Fig. 2. GALOPER-calculated CSDs (symbols) for surface-controlled open system growth, using 3, 5, and
7 calculation cycles (eg 5) and an initial crystal diameter of 1 nm, compared with theoretical lognormal curves
calculated from these data (solid lines).

The simulation with a decaying nucleation rate assumes that the reacting volume
has the potential to nucleate and grow 1001 crystals. Random numbers that vary
between 0 and 1 are assigned to each virtual crystal, and a probability for nucleation is
entered into the program. If, for example, the entered probability is 0.5, then during the
first calculation cycle all virtual crystals having a random number less than 0.5 (approx
500 crystals) will nucleate. During the second calculation cycle, new random numbers
are assigned to the approx 500 remaining virtual crystals, approx 250 more crystals will
nucleate, and all of the previously formed crystals (approx 500) then grow one cycle
according to the LPE and so on until all 1001 crystals have nucleated. Crystals (2.0 nm)
were nucleated and grown using a decaying nucleation rate with a probability for
nucleation of 0.9 (fig. 4B). This calculation yielded a mean diameter of 6.5 nm. The shape
of the CSD for this process is dominated by LPE growth during the last phases of
nucleation, and therefore the CSD is lognormal (table 1).

Simulation with an accelerating nucleation rate assumes that nucleation rate follows
the arbitrarily chosen formula: number of crystals nucleating per calculation cycle =
exp (kn), where k is a constant, and n is the calculation cycle number. If k = 0.55, the
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Fig. 3. Plots of rate equations (solid curves) for: (1) surface-controlled open system growth (eq 6 in text)
starting with 2 nm crystals; (2) constant-rate nucleation and growth (eq 7 in text) starting with 2 nm crystals; and
(3) supply-controlled growth (eq 9 in text) starting with a mean size of 100 nm and using k = 50. Epsilon was
allowed to vary between 0 and 1 for all calculations (that is, € = 0.5). The symbols represent GALOPER
calculations for the corresponding growth mechanisms.

CSD based on approx 1000 crystals (fig. 4C) is very similar to that found for constant
nucleation and growth (fig. 4A), except that the variance is greater for a given mean. The
CSD is not lognormal (table 1).

Overgrowth of previously nucleated crystals—The asymptotic CSD in figure 4A was
overgrown using the surface-controlled open system growth mechanism in GALOPER
to test if the LPE can produce a lognormal distribution from a CSD that is not lognormal.
Starting with a mean diameter of 5.2 nm (fig. 4A), progressive overgrowth yielded mean
diameters of 17.7 nm (fig. 5A) and 89.8 nm (fig. 5B). The smaller amount of overgrowth
produced a CSD that is pseudo-lognormal (which means that the significance level is <1
percent, although it appears lognormal-like by inspection; table 1) and that has a small
pointed hat (here termed a “circumflex” after the French accent) that extends above the
mode of the theoretical lognormal curve. The circumflex decreases in size as the amount
of overgrowth increases, and the shape of the CSD approaches that of the theoretical
lognormal curve, with the Chi-square test significance level increasing to >20 percent
(table 1).
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Fig. 4. GALOPER-calculated CSDs (points) for the continuous nucleation and

growth mechanism

assuming nucleation having: (A) a constant rate; (B) a decaying rate; and, (C) an accelerating rate. Critical
nucleus size = 2.0 nm. The solid lines are lognormal fits to the data.
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Supply-controlled growth in the open system.—One can imagine an open system in which
the rate of crystal growth is controlled by the rate of nutrient supply rather than by the
rate at which the crystal surface can grow in an infinite reservoir of nutrients. For
example, the supply may be slowed by diffusion or by the rate of dissolution of an
unstable phase that is a nutrient source, or crystals may grow so large that supply can not
keep up with the exponentially increasing demand for nutrients required by LPE growth.
This situation is simulated in GALOPER by specifying the total increase in volume that
1001 crystals are permitted (2AV,) during each cycle of eq (5). The crystals first are
allowed to grow freely during a calculation cycle according to eq (5). Next the growth
volume for that cycle for each crystal is calculated (AV; pg), and the growth volumes for
all crystals are summed (2AV;pp). The unconstrained growth volume for each crystal
then is reduced proportionately by the ratio of allowed volume to unconstrained growth
volume:

3AV, ‘ @
EAVj‘LPE

The corrected growth volume for each crystal (AV)) is added to the previous volume of
the crystal, and a new diameter for each crystal for that growth cycle is then calculated
from the equation for the volume of a sphere. The calculation is repeated for each growth
cycle. Therefore, during this type of growth the LPE is still the growth law, but growth is
limited proportionately by supply.

Supply-controlled open system growth is one of two growth mechanisms that does
not have a distinctive CSD), shape (the other being random ripening); rather, it adopts the
shape of an existing CSD. In figure 6A, a previously formed, GALOPER-calculated CSD
having a lognormal shape, a mean crystal diameter of 7.5 nm, a B2 = 0.21, and a total
initial system volume of 3.52 X 10° nm? for 1001 crystals, is overgrown using a constant
volume added (2AV, in eq 8). For each cycle AV, = 10° nm?, to yield lognormal CSDs
(table 1) having means of 20 and 100 nm and having approximately the same variance. A
similar calculation and result for an asymptotic CSD is shown in figure 7A. The figures
indicate that overgrowth of CSDs by this mechanism is distinguished by two properties:
(1) the lognormal or asymiptotic shapes of the distributions are preserved, and (2) the
variance of the CSDs remain constant. If B2 remains constant with an increase in mean
size, then the CSDs have a steady-state shape (figs. 6B and 7B) when plotted on reduced
axes (diameter/mean diameter versus frequency/maximum frequency). Previous work-
ers (for example, Eberl and Srodon, 1988; Inoue and others, 1988; Eberl and others,
1990) have incorrectly ascribed the lognormal steady-state shape (fig. 6B) to Ostwald
ripening. It will be shown below that Ostwald ripening does develop in the direction of a
universal steady-state shape for reduced CSD plots, but that the resulting shape is not
lognormal.

The relation for supply-controlled open system growth between the mean size after
n calculation cycles (X,,) and the initial mean radius (X,) is:

X, = X, + k(n)'?, (9)

where k is a constant that is proportional to the volume added for each cycle (SAV,). This
equation is plotted in figure 3, curve 3.

AVj = (Avj,LPE)

CRYSTAL SIZE EVOLUTION IN CLOSED SYSTEMS
Some crystals of a phase must dissolve for other crystals of the same phase to grow
in a closed system in which solution composition straddles equilibrium. Two main types
of crystal growth mechanisms are simulated here: Ostwald ripening (both supply- and
surface-controlled), during which surface free energy tends toward a minimum by
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dissolution of small particles, transport of matter through solution, and growth of large
particles (Baronnet, 1982) and supply-controlled random ripening (also called non-
Ostwald or kinetic ripening; Sohbel and Garside, 1992), in which some property of the
system other than crystal size determines crystal stability during a ripening process.
Possible properties include crystal defect density, chemical composition, structural
heterogeneity, strain, or environmental heterogeneity. A third type of crystal growth
mechanism, crystal agglomeration, will be discussed briefly. This occurs when crystals
grow together to produce suddenly much larger crystals.

Ostwald ripening—During Ostwald ripening, the smaller particles (which have the
largest specific surface free energy) dissolve while the larger particles grow larger.
Crystals of intermediate size that neither dissolve nor grow are in true equilibrium with
solution and are said to have the critical radius (r*). Because the system continues to lose
fine particles with time and because the level of supersaturation is influenced by the
solubility of the finest particles, the level of supersaturation during ripening continues to
fall. Therefore the size of the critical radius increases with time. As long as there is a
distribution of particle sizes in the system, ripening never ceases. However, as mean
crystal size increases, the differences in specific surface free energy decrease, and an
initially rapid evolution of the CSD may become so slow as to be negligible.

The GALOPER program uses the equations given by Markworth (1970) for
diffusion- (supply-) and surface- (interface-) controlled Ostwald ripening. These equa-
tions are based on the LSW theory for ripening of Lifshitz and Slyozov (1961) and
Wagner (1961). A more detailed description of the theoretical approach is given in app.
2. For diffusion-controlled ripening, the instantaneous rate at which a crystal changes size
is given by:

dt T\ r

dr_K(l 1

’ (10)

r*oor

where r = the crystal radius, t = time (or calculation cycles), r* = the critical radius,
which is equal to the mean radius (1), and K is a constant (see app. 2).
A similar equation is given for surface- (interface-) controlled ripening:

dr 1 1

- it r

’

’ (11)

where K’ is a constant, and r* = r’/T = volume-weighted mean radius, where the bars
refer to mean values. The equation for supply-controlled ripening probably is closer to
reality than that for surface-controlled ripening, because crystals that dissolve during
ripening appear to be rounded rather than etched (Loveland and Trivelli, 1947; Chai, ms
and 1975; Baronnet, 1974; Colbeck, 1986). This morphology is indicative of dissolution
by supply-(transport-) control (Berner, 1981); therefore, growth kinetics also are likely be
supply-controlled. Walton (1967) also indicates that ripening is a diffusion- (supply-)
controlled process. GALOPER calculations also favor the supply-control endmember,
because CSDs calculated for ripening by surface control do not fit actual measurements.

In the GALOPER program, a CSD is first calculated in the open system. Then an
arbitrary K (or K’) is entered into the closed-system part of the program that yields a rate
of crystal growth that is sufficiently rapid for ripening to proceed at a convenient rate.
After each calculation cycle, which corresponds to one iteration of eq (10) or (11) for a
maximum of 1001 crystals, the new CSD is calculated, a new critical radius (r*) is
determined, and ripening proceeds to the next calculation cycle. Because ripening
occurs in a closed system, mass must be conserved. Therefore, during each calculation
cycle the increase in volume of the crystals with radii greater than that of the critical
radius is adjusted proportionately by the method discussed previously for open system
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growth by supply-control (eq 8). This normalization matches the volume needed for
growth with the mass made available for growth from dissolution of crystals having radii

less than that of the critical radius. As ripening progresses, the mean diameter continues
to increase, but the reaction slows until growth is barely perceptible. Therefore, the

program realistically simulates this aspect of the natural process.
Mass balance requires that there are progressively fewer crystals in the system as the
mean size increases. Since the program is limited to an initial maximum of 1001 crystals,
large increases in mean size by ripening will lead to small numbers of crystals, and
therefore to inaccurately determined shapes for CSDs. Good counting statistics are
maintained, however, by iterating the ripening calculation, starting with the open
system. Frequencies for the ripened CSDs for each iteration are added, and then divided
by the number of iterations at the end of the calculation to find the final distribution.
Plots of progressive Ostwald ripening by supply-controlled kinetics of a lognormal
CSD formed in the open system with a mean diameter of 7.7 nm (fig. 8A, and the dashed
curves in fig. 8B, C, and D) lead to a shift in the CSDs (solid circles) to the right of the
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theoretical lognormal curves (solid lines in fig. 8B, C, and D), while the shapes of the
CSDs become more symmetrical (fig. 8B and C), and finally skew in the opposite
direction from the lognormal curves (fig. 8D). Ripening of initial CSDs having the
asymptotic shape leads to a similar behavior.

The ripened CSDs in figure 8 are tending toward the shape of a universal function
for supply-controlled ripening (eq A20 in app. 2). The end result of this process is a
steady-state reduced plot given as a solid curve in figure 9A. The shapes of CSDs will
tend toward this shape during supply-controlled ripening but may not reach it. For
example, the lognormally-shaped CSD in figure 8A was ripened in GALOPER so that
90 percent of its mass passed through solution. The results in figure 9A (open circles)
indicate that the steady-state shape is being approached by the calculation but has not
been achieved. Similar plots are given in figure 9B for surface-controlled ripening. In
figure 9B, the universal theoretical curve (solid line) was calculated from eq (A21) in app.
2, and 90 percent of the original mass of the initially lognormal CSD passed through
solution (circles). If the ripening starts with a CSD having the universal steady-state
shape, then theory predicts that this shape is maintained.

LSW theory also predicts that the mean diameter will vary linearly with the cube
root of time for supply-controlled ripening (eq A15, app. 2} and with the square root of
time for surface-controlled ripening (eq A19). Such plots are given in figure 10A and B,
respectively, for several different rate constants, except that the data are plotted in terms
of calculation cycles for eq (10) or eq (11), rather than in terms of time. The results are
indeed linear and show that calculation cycles in the GALOPER program are analogous
to time in the LSW theory.

Random ripening (supply-controlled) —During random ripening, crystals dissolve or
grow randomly with respect to size because something other than specific surface area
controls crystal solubility (for example, strain or environmental heterogeneity). In the
GALOPER program, a random number between 0 and 1 is assigned to each of the 1001
crystals, and a probability for dissolution is entered. All crystals with a random number
less than this probability dissolve completely during a series of cycles according to an
equation similar to the LPE (eq 5, where the ¢X; terms have negative values) and supply
nutrients to crystals that grow during the same series of cycles according to the LPE.
During supply-controlled random ripening, dissolution during each calculation cycle
proceeds at a rate slow enough to insure that the dissolved material is less than that
required for growth by the LPE. Mass balance is maintained as discussed previously (eq 8).

The effects of supply-controlled random ripening are depicted in figure 11. An
initial lognormal CSD having a mean diameter of 7.7 nm and a B2 of 0.20 (fig. 11A) is
ripened randomly so that 50 percent of its mass has passed through solution. The
resulting lognormal CSD has a mean diameter of 9.5 nm and a 32 of 0.21 (fig. 11B). The
contrast between random ripening and Ostwald ripening is striking: (1) whereas during
Ostwald ripening the shape of the CSD is modified (fig. 8), during random ripening the
shape is maintained (fig. 11). As with supply-controlled open system growth, random
ripening leads to steady-state shapes when CSDs are plotted on reduced axes, and (2)
much more material must pass through solution for a given change in mean diameter
during random ripening than during Ostwald ripening. For example, if 50 percent of the
mass of a sample having an initial mean diameter of 7.7 nm passes through solution
during the ripening process, the mean diameter increases to 9.5 nm for random ripening
(fig. 11B) while increasing to 20 nm for Ostwald ripening (fig. 8D).

Other types of random ripening can be imagined. For example, a crystal could
partially dissolve during one calculation cycle and grow during another. In this case,
much material could pass through solution, but it would leave little record of this reaction
in the shape of the CSD. One also could imagine surface-controlled random ripening
during which B2 would increase with the mean.
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Crystal agglomeration.—During growth by crystal agglomeration, two or more crystals
grow together to become one large crystal. In the GALOPER program, a probability for
crystal agglomeration is entered into the program, and a random number is assigned to
each of the crystals during each calculation cycle. If a crystal’s random number is less
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than the entered probability, the crystal’s size is added to that of the crystal below it on
the spreadsheet, and the original crystal is removed from the system. Various rules may
be applied concerning the size of crystals that are allowed to fuse together. Agglomera-
tion may occur simultaneously with ripening, may be imperceptible, or may lead to
multi-modal distributions.

SUMMARY OF RELATIONS BETWEEN CRYSTAL GROWTH MECHANISM AND CSD SHAPE

Crystal growth mechanisms and their effects on CSD shapes are summarized in
table 2. Often it is possible to identify growth mechanisms from the shapes of individual
CSDs, as is indicated in the table, but, in addition to considering the entire shape of the
CSD, confidence is gained by determining the evolution of B? with respect to « for a
series of related samples (fig. 12). Paths for surface-controlled growth in open systems
(labeled 1-3 in the figure) are linear, change slope with changes in system variability (e),
and change intercept with changes in initial crystal size. For example, curves 1 and 2,
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Fig. 12. Theoretical paths through a a-B? space for growing crystal size distributions, calculated using
GALOPER. 1 and 2 = paths for surface-controlled open system growth assuming starting crystal diameters of
all 2.0 and an asymptotic distribution have a mean size of 5.§Tnm, respectively; 3 = path for the same
calculation as curve 1, but letting € vary from 0 to 0.5 rather than between 0 and 1; 4 = path for continuous
nucleation and growth, with a critical nucleus of 2 nm; 5 = generalized path for supply-controlled open system
growth or random ripening; 6 = generalized path for Ostwald ripening.
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which have the same slope but different intercepts, indicate parameter evolution for
systems in which e varies between 0 and 1. However, curve 1 began with an initial
distribution containing only 2.0 nm crystals, whereas curve 2 started with an asymptotic
distribution, having a mean size of 5.2 nm, that was formed by continuous nucleation and
growth, and that was then modified by surface-controlled growth. Curve 3, like curve 1,
started with and initial crystal size of 2 nm and therefore has the same intercept as curve
1, but system variability (€) was allowed to vary between 0 and 0.5, rather than between 0
and 1, and therefore it has a smaller slope. A smaller system variability could represent,
for example, a better stirred system if variability is related to solution heterogeneities. In
all other calculations except that for curve 3, € was allowed to vary only between 0 and 1.

During continuous nucleation and growth with a constant nucleation rate, B2
increases exponentially with a. For example, curve 4 in figure 12 represents continuous
nucleation and growth using a critical nucleus size of 2.0 nm. Path 5 is arbitrarily chosen
(that is, not calculated) to represent supply-controlled growth or random ripening,
during which B? remains constant as the mean increases. Finally, an arbitrarily chosen
path 6 for Ostwald ripening indicates that B? decreases with increasing mean size.
Ostwald ripening is the only mechanism by which variance decreases as mean size
increases, except for certain types of agglomeration in which most of the crystals are
involved.

DISCUSSION AND EXAMPLES

Examples of continuous nucleation and growth.—~Figure 13 gives examples of measured
CSDs that have asymptotic-type shapes, which the GALOPER calculations suggest were
formed by the constant-rate nucleation mechanism. The phlogopite sample (fig. 13A)
was formed from a gel after 10 min at 600°C and 1 kb in an experimental hydrothermal
system (Baronnet, 1974). The Le Puy illite (fig. 13B) formed in a saline, alkaline lake in
the Massif Central, France (Gabis, 1963). The magnetite (fig. 13C) is from hornfels facies
rock from Skye (Cashman and Ferry, 1988). The AgBr crystals (fig. 13D) were precipi-
tated by running a solution of 200 g of silver nitrate in I L of water into a bromide-gelatin
solution containing 1700 g of water. The addition of silver nitrate was adjusted to last for
10 min and was constant (Loveland and Trivelli, 1947).

The nucleation (constant rate) and surface-controlled growth mechanism was used
to simulate the phlogopite (fig. 13A) and the illite (fig. 13B) CSDs. The calculations were
carried out by matching the calculated mean sizes with those of the samples, using a
critical nucleus size of 2.0 nm. A better match between experiment and simulation was
found for the phlogopite, if continuous nucleation and growth was followed by some
open system growth without nucleation. The results from GALOPER simulations for
both CSDs appear to match the data (fig. 13); however, Chi-square analysis gives a
significance level <1 percent (table 1).

Parameters for CSDs shown in figure 13 are plotted in figure 14. The uppermost
point for phlogopite, which is the synthetic, 10 min, hydrothermal sample, plots slightly
to the right of the continuous nucleation and growth trend, indicating that growth by this
mechanism may have been followed by some surface-controlled growth, as also was
indicated above by GALOPER simulation of the CSD shape. The left-most trend for
illites, which includes the Le Puy illite, follows that expected for continuous nucleation
and growth. The curves for the AgBr and magnetite samples have the correct slope for
continuous nucleation and growth but plot to the right of the theoretical trend, indicating
that growth by this mechanism may have been followed by supply-controlled growth or
by random ripening, which would increase size without changing variance.

Examples of surface-controlled open system growth—Thickness distributions (fig. 15) for
fundamental illite crystals (that is, the smallest physically separable illite platelets; see
Nadeau and others, 1984) are readily simulated using the open system, surface-
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controlled growth mechanism (Srodofi and others, submitted). It has only proved
necessary to match the calculated mean thicknesses to the measured mean thicknesses.
The simulation for the Zempleni illite started with an initial crystal thickness of 1 nm, and
the others started with 2 nm. All but one of the Chi-square tests demonstrate matches at
the >20 percent significance level between the measured distribution and the theoretical
lognormal curves and between the measured distribution and the GALOPER simula-
tions (table 1). The significance level for the exception (RM35A illite and the GALOPER
simulation) is at the 5 to 10 percent level. The trends in lognormal parameters for illite
fundamental particle thickness distributions for a series of hydrothermal and diagenetic
illite samples collected from a variety of locations (right illite trend in fig. 14) also indicate
surface-controlled, open system growth.

Examples of supply-controlled open system growth.—The only known growth mechanism
that evolves toward a lognormally-shaped CSD is surface-controlled growth (LPE
growth). Therefore, all the minerals depicted in figure 1, with the possible exception of
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the sphene sample, must have experienced this mechanism at some time during their
growth history. However, if crystals grew only by this mechanism, then the CSDs should
be very broad at large mean sizes, because 2 increases linearly with mean size (fig. 12).

For example, garnet 711A (fig. 1A, with & = 13.08 and B2 = 0.14) plots far to the right of
the curves that yield lognormal CSDs (curves 1-2 in fig. 12). The lognormal shape of this
garnet’s CSD is best explained by two growth stages: (1) an early stage during which the
lognormal profile was established (for example, the initial part of curve 1, fig. 12), and (2)
a later stage of supply-controlled open system growth or random ripening (curve 5, fig.

12) when the crystals grew larger while preserving B? from the previous stage. Many
minerals probably follow a crystallization path similar to that depicted for the garnet,

because the amount of nutrients required to maintain nucleation and surface-controlled
growth in the open system increases exponentially with mean crystal size. In response to
this exponentially increasing requirement for mass, minerals in general may leave the
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path of surface-controlled growth at about the same mean size to begin supply-controlled
growth (path 5 in fig. 12). Thus, their f2’s should be approximately equal no matter what
their final size. Therefore, their CSDs should follow steady-state reduced plots, as is
demonstrated in figure 16 for diverse minerals depicted in figure 1.

Another possible example of supply-controlled growth in an open system may be
found in a peritidal environment in Belize (Gregg and others, 1992) in which dolomite
crystals have lognormal CSDs (table 1). The mean size increases with depth (fig. 17),
from 0.42 pm near the top of the profile to 0.91 pm at 30.2 cm depth. Except for the
uppermost sample, $? remains approximately constant at about 0.13 throughout. The
CSDs in this profile could not have developed solely from open system surface-
controlled growth, because $2 has not increased with mean size. A significant amount of
Ostwald ripening also can be ruled out because the CSD would have moved to the right
of the theoretical lognormal curves (see fig. 8). Also, the crystals may be too large to have
sufficient differences in specific surface free energy at such a low temperature to drive the
Ostwald ripening process. Morse and Wang (1995) indicate that ripening would be
effective at sizes below 0.1 pm in such systems. The profiles could result from random
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Fig. 16. Reduced CSDs calculated for minerals in figure 1, demonstrating steady-state shape.

ripening, if the system were closed to nutrient influx, which seems unlikely for this type
of environment. The three deepest samples (fig. 17) seem to display a circumflex, a
feature discussed previously, that may have been inherited from an asymptotic-type
distribution formed during the nucleation stage.

Evidence for supply-controlled growth also comes from CSDs for garnets (sample
PM in Carlson and others, 1995; and several distributions in Miyazaki, 1991) which
approximate the universal steady state distribution (fig. 9A) expected for supply-
controlled Ostwald ripening. However, mean crystal sizes for these samples are mea-
sured in millimeters, and their crystal size distributions are narrow. Therefore differences
in specific surface free energy between small and large crystals are negligible (Morse and
Wang, 1996) and can not drive an Ostwald ripening process. The Ostwald profile must
have developed early in the garnets’ growth histories, when the crystals were much
smaller, and the shape of the CSD then was preserved as the crystals grew larger by
supply-controlled growth or by random ripening.

Examples of ripening—Perhaps the most comprehensive study of ripening is that of
Chai (1973; ms), and Anderson and Chai (1973) for calcite recrystallized in hydrother-
mal bomb experiments. One series of experiments (table 5 in Chai, ms) used Fisher
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Fig. 17. Measured CSDs (symbols) compared with theoretical lognormal curves (solid lines) for dolomite
CSDs collected at various depths from crusts from the bottom of Ambergris Cay, Belize (Gregg and others,
1992, and personal communication).

calcite as the starting material. It was reacted at 500°C and 2 kb pressure for different
lengths of time, and the fraction of material that passed through solution was calculated
from changes in calcite oxygen isotopes.

Figure 18 gives the particle size distributions (solid circles) measured by Chai for the
starting material (fig. 18A) and for calcites that reacted for three different lengths of time
(fig. 18B, C, and D). The figure also shows theoretical lognormal distributions calculated
from Chai’s measurements (dashed curves) and the GALOPER simulations (solid
curves). The latter were calculated by ripening the original lognormal (table 1) Fisher
calcite distribution to the mean sizes of the measured CSDs by the mechanisms of
random and Ostwald ripening, as will be discussed below, in the proportions predicted
from figure 19. During ripening, the measured CSDs move to the right of the theoretical
lognormal distributions, as is predicted by theory (fig. 8), and are matched by the
GALOPER simulated CSDs (table 1).

The fraction of calcite recrystallized, as measured by isotopic analysis, is plotted as a
function of mean crystal diameter in figure 19 (solid circles), with increasing mean size
corresponding to increasing reaction time. The GALOPER simulation for Ostwald
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Fig. 18. CSDs (from figs. 44 and 45 in Chai, ms) from calcite ripening experiments compared with
ormal (dashed curves) and GALOPER simulations (solid curves). The initial Fisher calcite was

theoretical lo
ripening (lower line in fig. 19) does not fit these data. The simulation predicts a much

smaller amount of recrystallization for a given increase in mean crystal diameter. If the
simulation is correct, then a process other than Ostwald ripening must have occurred in

the experiments. It seems unlikely that the Fisher calcite, initially formed at low
temperatures, would react completely by surface-area driven recrystallization when

taken to 500°C. The crystals may contain defects, sharp edges, other imperfections, and
other polymorphs that may destabilize crystals of all sizes when exposed to an environ-
ment radically different from that of its initial, low temperature formation.

The upper curve in figure 19 is a GALOPER calculation for purely random
ripening. The measurements fall between the two calculated endmember mechanisms
and indicate that the calcites may have reacted by both mechanisms, with random
ripening accounting for approx 80 to 85 percent of the material that passed through

solution. Thus, the shapes of the calcite CSDs are a function of Ostwald ripening,
whereas the major fracfion of material passing through solution is a function of random

ripened at 500°C and 2 kb for different lengths of time.

ripening.
Pathways in a-B? space for several experimental Ostwald ripenings are indicated by
descending arrows in figure 14. B? decreases as ripening proceeds, and the CSDs (not
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calcite ripening experiments, compared with theoretical, GALOPER-calculated curves for random ripening
(upper curve) and Bstwald ripening (lower curve). Data from table 5 in Chai, ms).

shown) have the characteristic, more symmetrical shapes that lie to the right of
theoretical lognormal curves. The exception is the shapes of CSDs for ice crystals
ripened in a water-saturated system (Colbeck, 1986, 1987). In this system, the rate of
crystal growth is a function of the rate of heat transfer, rather than the rate of mass
transfer. These CSDs retained their lognormal shapes during ripening, and 3% remained
constant (fig. 14), suggesting that random ripening may have played a role in this process.

CONCLUSION

In systems that are very close to equilibrium, conventional kinetic and thermody-
namic theories are useful, and the equations for Ostwald ripening indicate that reaction
rates are proportional to differences in diffusion rate and to differences in surface free
energy, as is expected from the principle of detailed balancing (Lasaga, 1981). Assuming
that crystals of the same phase have identical internal and surface energies, Ostwald
ripening rates are proportional to differences in specific surface area (area/volume, or 1/r
ineqs 10 and 11).

Systems that are far from equilibrium may be very heterogeneous; therefore,
conventional thermodynamic and kinetic theories are difficult to apply. The Law of
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Proportionate Effect, chosen because it yields correct lognormal shapes for CSDs for
many minerals, and because it describes size dependent growth and growth dispersion,
has proven to be a simple approach for modeling the complex phenomena of crystal
growth in such systems. This law (eq 5) indicates that crystals will tend to grow in
proportion to their size. It is remarkable that such an apparently vague prediction can
lead to such exact results for simulating the growth of crystal size distributions.

The present approach recognizes three basic shapes for CSDs: lognormal, asymp-
totic, and a universal steady state shape. These shapes identify three mechanisms for
crystal growth: surface-controlled growth, continuous nucleation and growth, and
Ostwald ripening, respectively. Intermediate shapes also are possible as one CSD shape
is transformed into another by a change in growth mechanism. In addition, there are two
growth mechanisms that are hidden because they adopt the shape of the previous CSD:
supply-controlled growth and random ripening. Crystals may undergo a sequential
change in growth mechanisms as environmental conditions (especially levels of supersatu-
ration) change during crystal growth. Changes in growth mechanism not only affect the
shape of the CSD but also the rate law for crystal growth.
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APPENDIX 1
' The law of proportionate effect
The derivation below generally follows that of Koch (1966). The Law of Proportionate Effect is:

X

i1 = X + ¢X, (A1)

where X; is some specified dimension in a crystal, ¢jis a small, randomly varied number, and Xj., is the new
crystal dimension after one growth cycle. If eq (Al) is iterated several times for many crystals, the final
distribution can be shown to be lognormal. .

According to the central limit theorem, a normal (bell-shaped or Gaussian} distribution can be generated
by addition of small, independent, random variables to a quantity. A lognormal distribution can be generated
similarly by adding the same type of variables to the logarithm of a quantity. Rewriting eq {A1):

X = X1 + ¢,
and
X, =Xl + €). (A2)

For n number of calculation cycles, one can rewrite the above equation:
n
X=X ][ (1 +¢), (A3)
=1
where Xy is the initial size, and ITis the product of (1 + ¢} for the variable j. Taking the logarithms of both sides:

InX,=mnX,+ > In{l +¢). (A4)
=1
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The logarithm can be expanded for values of € that are small compared to 1:

e & ¢

In(1+¢ =€ RS (A5)

Because the terms raised to a power in the above equation are small, they can be ignored, and the result
substituted into eq (A4) to yield:

X, =InX,+ X ¢ (A6)
j=1

Therefore, according to the central limit theorem, the logarithms of the crystal sizes (In X,,) will be normally
distributed.

A mean value for ¢, can be used to calculate the final mean size (X,) of a CSD from the initial mean size
(X,)- This calculation is possible because the variation in €, is identical within each cycle, and is independent
from crystal size. In accordance with eq {A6):

n
2%
i=1

nX,/X)=n - = ne, or X, = X, exp (ne). (A7)

The proof that the LPE yields a lognormal distribution requires that the values of € be small compared with
one, but calculation shows that a good approximation to the lognormal distribution is realized even if € is
allowed to vary between 0 and 1. If €, is large and if € varies between €, and €max, then eq {7A) should be
replaced by a modified form of eq (A4):

In(l + ¢)
1 X/— _ j=1 _ 1 1+(max+emin))
n(X. /Xy =n - =nln 3
then
b = €max + Emin) . e
Xn=X(,1+——2—) =Xl +&~ (A8)

If€ « 1, then eq (A8] is transformed into eq (A7),

APPENDIX 2
Ostwald ripening
According to Wagner (1961) a growth (or dissolution) rate of crystals is expressed by the equation:

(A9)

™ o

dr 2yCpv D (1 1
dt kT xr+Dir*

where r is the crystal radius, t is time (or calculation cycles), r* is the critical radius of a crystal that is in
equilibrium with solution, D is the solute diffusion coefficient, T is a parameter describing the rate-limiting
process at the interface boundaries, v is the interfacial free energy, v is the atomic volume of the solute, Cy is the
concentration of the saturated solution, k is the Boltzman constant, and T is the absolute temperature.

Eq (A9) was obtained when the condition dr/dt = 0 was satisfied for a crystal having the critical radius:

ff r’dr
e

ree— (A10)

ff ) rdr
(r nr+ D

where f(r, t) describes the crystal size distribution as a function of time.
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The condition dr/dt = O for crystals having the critical radius expresses the condition of equilibrium
between crystals and solution. If r > r* the crystal grows; if r < r* it dissolves. An evolution of the crystal growth
system with time, t, leads to an increase of r* according to the equation (Wagner, 1961):

o [ kT \(r*z)('qr* +D)
" YyCo/ WD

(A1)

qs is a constant that depends on specified crystal growth conditions. Eqs (A9) and (A10) show that crystal growth
rate, as well as critical radius values, are strongly controlled by a diffusion coefficient value; that is, they depend
on the supply of available nutrients.

Let us consider two extreme cases which may correspond to diffusion-controlled ripening (D is small) or to
surface-controlled ripening (D is large). In the first case, nr > D, and the instantaneous rate at which a given
crystal grows {or dissolves) is obtained from eq (A9) by omitting D in the term (nr + D}:

dr 2yCpDf1 1

dt~ mkTr &* =
Replacement of (nr + D) by mr in eq (A10) shows that in the given case a critical radius is equal to the mean
dimension of the crystals, T, since:

(A12)

f {(r, tirdr
B f flr, t)dr

A similar operation transforms eq (All) and reveals a relation between r* and time, t. Note that for
diffusion-controlled conditions, g; = 9/4 (Wagner, 1961). Thus

=% (A13)

T

_ 9kT(r*)? Al4)
= 84CoD (
and
_ [8yCovDtyi73
* o n |
rf=r ( OT [A15)

Eq (A15) shows that at relatively large time, the crystal radius should asymptotically increase with time as t!“3.
In the second case, D > mr in egs (A9) and (A10). This case corresponds to surface-controlled kinetics.
The equations describing a crystal growth rate and a critical radius value can be obtained from eqs (A9) and
(A10}, respectively, omitting mir in the term (D + nr}.
The corresponding equations are transformed:

dr B 2vCyy l l
dt kT (r* - r) (A16)
and
frzf(r, tdr 2
o EANL (A17)
I

Replacement of (D + nr) by D in eq A11 shows that the critical radius should asymptotically increase with
time as t'/2, since

™), (A18)
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and

C, t\1/2
= (m) . (A].Q)

kT

In the given case, g; in eq (Al1) equals 2 (Wagner, 1961).

A remarkable feature of surface- and supply-controlled Ostwald ripening is the evolution of the crystal size
distribution with the passage of time. It was shown by Lifshitz and Slyozov (1961) and Wagner (1961) that at
large time this distribution can be approximated by certain universal functions that develop irrespective of the
initial CSD. For example, in the case of supply-controlled crystal growth this function has the form:

fir, ) = Const (7 ( 3 ),

(3 — 20)13(3 + )73 *Plon—3 (A20)
where u = 1/f = t/r*. As can be seen in figure 9A, normalized f(r, t) has an asymptotic profile with two
characteristic features: (A) this function is equal or very close to zero at u > 3/2 or r > {3/2)t; (B) it has a
left-hand skewed distribution of crystal sizes.

Similar features are observed in the case of surface-controlled ripening:

{tHu 3u
flr, t) = Constm exp|—— |’ (A21)
where u = r/r* and f(r, t) = 0 foru = 2 (fig. 9B).
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