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1 Introduction.

1.1 What is DIFFaX?

DIFFaX is a fortran computer program that calculates diffraction intensities from crystals that
contain coherent planar defects, such as twins and stacking faults. DIFFaX exploits the recurring
patterns found in randomized stacking sequences to compute the average interference wavefunction
scattered from each layer type occurring in a faulted crystal [1]. It is then a simple step to calculate
the incoherent intensity contribution at hkl. Although the physics behind the diffracted intensity
algorithm used by DIFFaX is basically the same as that used by other methods, most notably
the Hendricks & Teller [2], the difference equation [3], and the Cowley methods [4], the recursion
algorithm is significantly simpler to understand. This simplicity prompted the writing of this general
purpose program, which can accommodate any type of coherent planar defect in any crystal system.
A brief description of the DIFFaX algorithm is presented in section 8 on page 45. The details of
the algorithm are described in reference [1], a copy of which is included in section B.7 on page 93

of this manual.

1.2 About this manual.

The DIFFaX fortran code was written with portability in mind. The source code DIFFaX.f is pretty
much ansi77-compliant and should compile and run, with few changes, on most modern computers.
To run, DIFFaX assumes that a standard tty-type of input/output window is available, such as
that found on unix machines. When compiling DIFFaX.f on a Macintosh or a Windows-based PC,
systems which use a graphical user interface, the compiler must supply a tty-type window that is
dedicated to DIFFaX.

The primary goal of this manual is to help explain to the reader how to construct a DIFFaX
data file, and how to run the DIFFaX program on this file. Although we have tried to make DIFFaX
as simple to run, and as flexible as possible, the preparation of a data file that accurately describes
a particular faulted structure can be a considerable challenge. It is the hope that this manual
provides enough examples and explanations to simplify the data file building process.

A pre-compiled version of DIFFaX that runs on Macintosh computers, MacDIFFaX, is supplied
on the Macintosh diskette that came with this manual (MacDIFFaX is also available on request
from the author). MacDIFFaX behaves almost identically to the unix version of DIFFaX. The
Macintosh-specific differences between MacDIFFaX and DIFFaX are explained in section 3.8 on
page 36.



2 Creating structure data files.

DIFFaX structure data files are text files that contain information about the type of radiation
to simulate, the structure of the layers, and details of the interlayer connectivities. Although the
DIFFaX data file format is straightforward, in the author’s experience the creation of error-free files
is surprisingly difficult. This difficulty arises because of the unconventional way in which DIFFaX
needs the defect structure to be described. Conventionally, crystals are thought of in terms of
unit cells, which in turn can be broken down further into asymmetric sub-units of atoms and a
set of space group symmetry operators. To use DIFFaX we need to think of crystals in terms
of sheets of atoms, or layers, which can interconnect via stacking operations that occur with a
certain probability. Frequently, the plane of the layers will not coincide conveniently with any of
the unit cell faces of the parent crystal. This requires a transformation of atom coordinates to a
new cell system. For example, to describe 111 twins in face centered cubic materials, the layers
(111 planes, and their mirrored counterparts) must be transformed to a hexagonal setting where
the new c-axis is parallel to the old cubic [111] direction. The new hexagonal a- and b- axes now
lie in the plane of the old cubic 111 layers, and define a two-dimensional hexagonal mesh that is
common to all layers in the crystal. The atom coordinates and stacking vectors will need to be
defined in terms of the hexagonal setting. Great care needs to be taken when creating the data set.
It is wise to compare diffraction spectra for the unfaulted end-members, with those generated from
a standard diffraction calculation program to ensure that you are starting from a valid data set.
To help the user to avoid wasting time on flawed data files, a conscious design decision was made
to make DIFFaX unforgiving when it discovers errors or inconsistencies in the data file. Usually,
when a potential problem is found, DIFFaX will quit, forcing the user to repair the data file. This

“zero-tolerance” strategy has saved the present author from numerous embarrassing blunders.

2.1 Data line lengths.

The maximum data line length is 200 characters. Anything typed beyond the 200th character
may be lost, and may generate error messages. The accepted line length has been increased from
the obsolete “punched card” value of 80 characters that applied in DIFFaX versions 1.7xx. 200

characters should be sufficiently wide to handle most reasonable data input lines.

2.2 Case sensitivity.

Data can be written in either upper- or lower-case. DIFFaX is insensitive to the case of the text.
However, DIFFaX does assume that it is reading ASCII-defined characters. Some of the text

manipulating subroutines will not work if the computer system is not ASCII-based.



2.3 Comments in the data file.

Comments can be embedded in the data files. Anything written between curly braces, i.e. {this is
a comment}, will be ignored. Comments can be nested, and there can be more than one comment
per line. All comments must begin and end on the same line; DIFFaX will assume that the data
is faulty if it cannot match pairs of braces on a line. Total line lengths, including comments and

braces, must not exceed 200 characters.

2.4 Backus-Naur Description of the datafile.

In Backus-Naur form, the data file format is as follows

user input data file -- in Backus-Naur form}

comments are in curly braces, blank lines are allowed}

The pipe symbol | implies that one of a series of arguments must be chosen}
arguments in parentheses () are optional}

Header for radiation data} INSTRUMENTAL
radiation type} X-RAY | NEUTRON | ELECTRON
wavelength in A} A

{Instrumental broadening type} NONE
| GAUSSIAN half-width | u v w (TRIM)
| LORENTZIAN half-width | u v w (TRIM)
| PSEUDO-VOIGT u v w o (TRIM)

{Header for structure data} STRUCTURAL
{cell dimensions, in A and °} a b ¢ v
{diffraction point group symmetry} -1 | 2/M(1) | 2/M(2) | MMM
| -3 | -3M | 4/M | 4/MMM
| 6/M | 6/MMM | AXIAL
| UNKNOWN (% tolerance)
{total number of layer types} n
{in-plane layer widths in A (optional)} (‘width along a’ ‘width along b’)
| (‘average diameter’)
| (INFINITE)

New layer definition} LAYER 1

Layer structure symmetry} NONE | CENTROSYMMETRIC

Atom data record}

name # x_rel y_rel zrel ‘isotropic Debye-Waller factor By’ occupancy

New layer definition} LAYER number | LAYER = a previous layer number
If this is not equivalent to a prior layer, then enter ...}

Layer structure symmetry} NONE | CENTROSYMMETRIC

Atom data record}

name # x.rel y.rel z.rel ‘isotropic Debye-Waller factor By’ occupancy

New layer definition} LAYER number | LAYER = previous layer number
If this is not equivalent to a prior layer, then enter ...}



Layer structure symmetry} NONE | CENTROSYMMETRIC
Atom data record}
name # x.rel y.rel z.rel ‘isotropic Debye-Waller factor By’ occupancy

name # x.rel y.rel zrel ‘isotropic Debye-Waller factor By’ occupancy

Header for stacking description} STACKING

How to treat layer sequencing} EXPLICIT | RECURSIVE

If EXPLICIT}

either, an explicit sequence} lay# lay# lay# lay# lay# lay# lay# lay#
lay# lay# lay# lay# lay# lay# lay# lay# lay# lay# lay# lay# lay# lay#

or, generate sequence} RANDOM ‘number of layers in crystal’
If RECURSIVE}
number of layers in crystal} ‘number of layers’ | INFINITE

Header for stacking parameters} TRANSITIONS
stacking probability, stacking vector (optional anisotropic stacking
uncertainty factor)}
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2.5 An example data file

A data file describing random twin faults in diamond, {including comments in braces} is

listed below. See appendix A.1 for a more complete description.

data file for cubic diamond, with random intergrowths of hexagonal lonsdaleite}
probability of cubic stacking = 70%}

INSTRUMENTAL {Header for instrumental section}
X-RAY {Simulate X-ray diffraction}
1.5418 {X-ray wavelength}

PSEUDO-VOIGT 0.89 -0.32 0.08 0.6 trim {Instrumental broadening}

STRUCTURAL {Header for structural section}
2.52 2.52 2.06 120.0 {unit cell coordinates}

6/MMM {hexagonal, c axis = cubic [111]}
2 {2 layer types: 111 sheet, plus its mirror}
infinite {infinite layer width}

LAYER 1 {cubic (111) layer, centrosymmetric}
CENTROSYMMETRIC

C 1 -0.333333 -0.166667 -0.125 1.0 1.0

{C'1 0.333333 0.166667 0.125 1.0 1.0 -the 2nd centrosymmetric atom}

{ -does not need to be declared}
LAYER 2 {mirror image of layer 1}
CENTROSYMMETRIC

C1 0.333333 0.166667 -0.125 1.0 1.0

{C 1 -0.333333 -0.166667 0.125 1.0 1.0 -the 2nd centrosymmetric atom}

{ -does not need to be declared}
STACKING {Header for stacking description}
recursive {Statistical ensemble}

infinite {Infinite number of layers}
TRANSITIONS {Header for transitiomns}
{Transitions from layer 1}

0.7 0.666667 0.333333 1.0 {layer 1 to layer 1, 70% chance}
0.3 0.0 0.0 1.0 {layer 1 to layer 2, 30% chance}
{Transitions from layer 2}

0.3 0.0 0.0 1.0 {layer 2 to layer 1, 30% chance}
0.7 -0.666667 -0.333333 1.0 {layer 2 to layer 2, 70% chance}



The same file, expressed more tersely, could read

INSTRUMENTAL

X-RAY

1.5418

PSEUDO-VOIGT .89 -.32 .08 .6 trim
STRUCTURAL

2.52 2.52 2.06 120
6/MMM

2

LAYER 1
CENTROSYMMETRIC
c1-1/3 -1/6 -1/8 1 1
LAYER 2
CENTROSYMMETRIC
c11/31/6 -1/8 11
STACKING

recursive

infinite

TRANSITIONS

.7 2/3 1/3 1
3001

3001

.7 -2/3 -1/3 1

Note that the data line relating to the layer widths can be omitted (this exception ensures
backwards compatibility with earlier DIFFaX versions). All other data lines must appear in
the correct sequence.

In DIFFaX v1.804 and later, atom coordinates and stacking vectors can be expressed as
fractions. For irrational fractions such as 1/3, this ensures maximum machine precision.

We now describe the data file format in more detail.
2.6 INSTRUMENTAL section.
2.6.1 INSTRUMENTAL header.

Line 1: The first non-comment, non-blank line must contain the keyword INSTRUMENTAL
(either upper or lower case). No abbreviations are accepted. The data that follows describes

the type of radiation and the instrumental conditions.

2.6.2 The radiation type.

Line 2: The choice is X-RAY, NEUTRON or ELECTRON, in either upper- or lower-case. No

abbreviations are accepted.

2.6.3 The radiation wavelength.

Line 3: The numerical value of the radiation wavelength in Angstroms.



2.6.4 The instrumental broadening.

Line 4: The type of instrumental broadening to simulate in powder pattern calculations.
Although instrumental broadening applies only to powder pattern calculations, this line must
always be supplied. There are four types supported by DIFFaX namely NONE, GAUSSIAN,
LORENTZIAN and PSEUDO-VOIGT. We now describe these options in more detail.

2.6.5 Instrumental broadening type, NONE.

The raw powder pattern data only is saved to file, with no instrumental broadening ap-
plied. The resolution of the spectrum is determined solely by the sampling step size Af (see
pages 34-36).

2.6.6 GAUSSIAN instrumental broadening.

The data is “convolved” with a Gaussian function, whose width may vary across the spec-
trum. A full-width half-maximum (NOT the standard deviation), in degrees, needs to be
specified for this option. The line

GAUSSIAN 0.1
will specify a 0.1° constant full-width half-maximum Gaussian profile. The data line
Gaussian 0.0

is equivalent to specifying NONE. The full-width half-maximum must not be negative. The

data line
Gaussian -0.1

will generate an error message. Alternatively, a variable full-width half-maximum I'() can

be specified, having the form

(0) = \Jutan®(8/2) + v tan(6/2) + w (1)

u, v and w describe how the the full-width half-maximum (FWHM) varies as a function of

the scattering angle 6. The intensity profile I of the peak centered at 6; is described by the

I(01; 61 — 02) = EFI?Q(IQ))Q exp <_41n(§z$2— 2 ) (2)

where 6, — 6, represents the angular distance from the peak center.

equation




The standard deviation A of the peak intensity distribution is
INQ

A(f)) = L)

81n(2)

The data line
Gaussian 0.1 -0.036 0.009

specifies a Gaussian broadening profile with v = 0.1, v = —0.036 and w = 0.009. Note that

the variable FWHM option is computationally expensive.

2.6.7 LORENTZIAN instrumental broadening.

The data is “convolved” with a Lorentzian function, whose width may vary across the spec-
trum. As for the GAUSSIAN option, a full-width half-maximum, in degrees, needs to be
specified. The full-width half-maximum must be positive. The entry

Lorentzian 0.1

will specify a 0.1 degree constant full-width half-maximum, Lorentzian instrumental broad-

ening profile. The line
Lorentzian 0.0

is equivalent to specifying ‘NONE’. In the same way as for the GAUSSIAN option, a variable
full-width half-maximum can be specified, with associated u, v and w parameters. The full-
width half-maximum is given by equation 1. For a Lorentzian profile, the broadening is
described by the equation

2I°(61)

IOt = 02) = g 1, — 6y (4)

Thus, the data line
Lorentzian 0.1 -0.036 0.009

specifies a Lorentzian broadening profile with u = 0.1 v = —0.036 and w = 0.009. Note that

the variable FWHM option is computationally expensive.



2.6.8 PSEUDO-VOIGT instrumental broadening.

The data is broadened according to the pseudo-Voigt function, which is a weighted sum of
Gaussian and Lorentzian functions. The broadening can vary with scattering angle. The
pseudo-Voigt function requires 4 parameters, u, v, w and o.

u, v and w control the full-width half-maximum according to equation 1. ¢ controls the
relative amount of Gaussian and Lorentzian components, and must have a value between 0
and 1. ¢ = 0 is equivalent to pure Gaussian everywhere, and ¢ = 1 is equivalent to pure

Lorentzian everywhere. The pseudo-Voigt function is described by the equation

Ipy(01;601 —02) = - 201(61) 41n(2) exp <—41H(2>(91 - 92)2> (5)

[0(0:)2 + 4(6, — 05)7] (1-0) 70(0,)2 T(6,)?

The pseudo-Voigt function takes considerably longer to compute than do the Gaussian and
Lorentzian options that specify a constant full-width half-maximum. The reason is that the
full-width half-maximum changes as a function of scattering angle, and fresh Gaussian and
Lorentzian profiles must be computed for each point in the spectrum. When the full-width
half-maximum is constant, the broadening profile is computed once, and then rapidly applied
to every point. Whenever possible, DIFFaX will attempt to speed up the computation if

certain redundancies are detected. For example, the data line
PSEUDO-VOIGT 0.1 -0.036 0.009 0.6

specifies pseudo-Voigt broadening with v = 0.1, v = —0.036 w = 0.009 and ¢ = 0.6.

However, the data line
PSEUDO-VOIGT 0.0 0.0 0.0 0.6

is equivalent to specifying NONE, and DIFFaX will not apply any instrumental broadening.
The entry

PSEUDO-VOIGT 0.0 0.0 0.16 1.0
will be interpreted by DIFFaX as if
LORENTZIAN 0.4

had been specified, since in this instance the FWHM is given by I' = /w (see equation 1),

which is independent of scattering angle. Similarly, the data line

PSEUDO-VOIGT 0.0 0.0 0.16 0.0



is read by DIFFaX as
GAUSSIAN 0.4.

It should be noted, however, that the GAUSSIAN and LORENTZIAN options, when supplied
with non-zero u, v and w, call the pseudo-Voigt function with ¢ = 0 and 1, respectively, and
are therefore computationally expensive functions.

For most powder pattern simulations, a GAUSSIAN or LORENTZIAN broadening profile
with a constant full-width half maximum should be adequate, and are significantly faster
computationally than the PSEUDO-VOIGT broadening profile.

2.6.9 TRIM keyword.

If one of GAUSSIAN, LORENTZIAN, or PSEUDO-VOIGT are specified, there is a further optional
keyword that can be supplied, TRIM. TRIM tells DIFFaX to ignore intensity information
close to the origin when simulating the instrumental broadening for a powder diffraction
pattern. The peak at the origin is usually many orders of magnitude more intense than
any other peak in the spectrum, and the background that is generated by the tails of this
peak, when broadened, can easily swamp peaks close to the origin. When TRIM is specified,
the unbroadened spectrum that is written to file retains the data at the origin, whereas
the broadened data that is written to file suppresses the peak at the origin. It is generally
desirable to specify TRIM whenever the powder pattern angular range includes the origin.
TRIM has no effect if the powder pattern angular range requested by the user does not include

the origin.

2.6.10 Examples of the INSTRUMENTAL data section.

Examples of a typical INSTRUMENTAL data section, with optional comments, might look like

INSTRUMENTAL

Radiation type = } X-RAY

wavelength = } 1.5418

Instrumental broadening} PSEUDO-VOIGT 0.1 -0.036 0.009 0.6 trim

or

INSTRUMENTAL

electron {Radiation type}

0.037 {wavelength}

none {Instrumental broadening}

or simply

instrumental
x-ray
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0.7
gaussian 0.1 trim

2.7 STRUCTURAL section.

The next part of the data section relates to the cell mesh that defines the symmetry of the

crystal layers.

2.7.1 STRUCTURAL header.

Line 5: This section must begin with the keyword STRUCTURAL (either upper or lower case).

2.7.2 Cell dimensions.

Line 6: The cell dimensions, a, b, ¢ and . All layers must share the same in-plane mesh
dimensions, a, b and . The value of ¢, perpendicular to the a-b plane (and therefore
parallel to the stacking direction), is needed to provide a reference scale along the stacking
direction with which to define the z-component of the stacking vectors. c¢ does not have
to correspond to any special periodic dimension along the stacking direction for any of the

layers. The data line
17.437 17.437 14.238 120.0

defines a cell with a =b = 17.437 A, ¢ = 14.238 A, and v = 120°. Note that the cell axes
must be defined so that c is parallel to the fault direction, that is, perpendicular to a and
b. This will not always coincide with the c-axis of the original crystal system that the layer
was clipped from. In the present version of DIFFaX, it is up to the user to transform the
cell axial system to that expected by DIFFaX.

2.7.3 Laue symmetry.

Line 7: The expected Laue symmetry of the diffraction data. DIFFaX uses the Laue group
symmetry to speed up powder diffraction calculations by reducing the volume of reciprocal
space that needs to be included in the intensity integration. It is usually best to specify
UNKNOWN, and to let DIFFaX work out the symmetry. There are ten possible diffraction
point groups in the presence of streaking along one axis. These ten are a subset of the 12
Laue point groups. The Laue groups are, in turn, that subset of the 32 crystallographic point
groups which possess a center of symmetry so that the diffracted intensities obey Friedel’s
law. The two Laue groups, 3M and M3M, are excluded since the non-orthogonal 3-fold axes

will be violated by any streaking that may occur along c¢*. The user can specify one of
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the ten “streaky” point groups, or, if the symmetry is not known, the keyword UNKNOWN,
whereby DIFFaX will establish the symmetry by randomly sampling reciprocal space. If
UNKNOWN is entered, the user can specify a % tolerance on intensity deviations for this search.
The default tolerance in DIFFaX is 1% (i.e. if the symmetry turns out to be 4/MMM, the
maximum deviation in intensity between the hkl, khl, hkl and khl reflections did not exceed
the average intensity of the four reflections by more than one part in a hundred). A twelfth
option, AXIAL, is provided, which constrains DIFFaX to integrate along the 00/ axis only.
This is useful for turbostratically disordered systems, where lateral coherence between layers
is lost. The twelve options are

-1

2/M(1) {diad along streaks}

2/M(2) {diad perpendicular to streaks}

MMM

-3

-3M

4/M

4/MMM

6/M

6/MMM

AXTAL
UNKNOWN (tolerance)

If the user suggests one of the ten point groups, DIFFaX will always check the user’s
choice, and will override it if the choice is inconsistent with the unit cell dimensions (i.e. if a
is not equal to b, then -3, -3M, 4/M, 4/MMM, 6/M, 6/MMM are not possible). DIFFaX will
provide a measure of the ‘goodness of fit’, which is the maximum deviation from the symme-
try encountered during a random sampling of reciprocal space. In the author’s experience,
this point group symmetry parameter is useful for debugging new data files, particularly if
the cell axes used by DIFFaX are not the same as those of the crystal system from which
the layers were clipped.

As a rule, it is easiest and safest to specify UNKNOWN, and to let DIFFaX do the work.
However, there are rare occasions when DIFFaX finds a higher symmetry than is actually
the case. This is caused by the limited random sampling of reciprocal space (the default is
25 tests of symmetry-related hkl values per symmetry element). Erroneous high symmetries
can be avoided by using one of three strategies. (1) Specifying a more stringent tolerance,
i.e. UNKNOWN 0.01 will specify a tolerance on the comparisons of 0.01% (one part in 10,000).
Note that DIFFaX imposes a lower limit on the tolerance of 0.01%. (2) If the user already
knows the symmetry, then simply declare it outright. (3) If the cautious user wishes to over-
ride the symmetry evaluation altogether, then specify ‘-1’ the lowest possible symmetry

consistent with Friedel’s law. This option may take significantly longer to compute, since all
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hkl (I > 0) are visited.

2.7.4 Number of layer types.

Line 8: Enter here the number of layer types that the faulted structure contains. Layers
which are structurally identical, but exhibit different stacking behavior, count as distinct

layers.

2.7.5 Layer characteristic widths.

Line 9: This line is optional, and was introduced with DIFFaX v1.801. Enter here the
characteristic width, in Angstroms, of the crystal along the cell a and b directions. These
parameters are used to estimate a Debye-Scherrer type of peak broadening due to a finite

layer width. There are several legal formats for this line;

‘width along a’ ‘width along b’
‘layer diameter’
¢INFINITE’

In order to maximize compatibility with versions of DIFFaX preceding version 1.80, this
line may be omitted altogether. In this instance an INFINITE layer diameter is the default.

Note that the peak-broadening contribution due to a finite number of layers stacking
along c is handled differently by DIFFaX (see the STACKING description in section 2.9).

2.7.6 Examples of the STRUCTURAL data section.

Typical data entries for the first part of the STRUCTURAL section might look like

STRUCTURAL

a, b, ¢, gamma} 17.437 17.437 14.238 120.0
Expected diffraction point symmetry} 6/mmm
Number of layers = } 4

layer width (optional)} infinite

and

STRUCTURAL

a, b, ¢, gamma} 4.437 3.431 1.2 87.1

Point symmetry unknown, tolerance = 1%} unknown 1.0

Number of layers = } 2
layer widths along a and b} 200 600

2.8 Layer structure data.

The data that follows describes the structure of the layers themselves.
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2.8.1 Layer header

Line 10: Header for the first layer. It must read LAYER 1. This can be in upper or lower

case. Abbreviations are not accepted.

2.8.2 Layer symmetry

Line 11: Symmetry of the layer structure. Only two options are accepted, NONE and
CENTROSYMMETRIC. If CENTROSYMMETRIC, only the asymmetric half of the atom coordinates
need be entered, taking care to halve the occupancy of those atoms that are shared by the two
asymmetric halves. If centrosymmetric, all layer scattering factors will be treated as having
real values in DIFFaX with the complex component ignored. Therefore, specifying cen-
trosymmetric can provide a useful gain in computation speed, particularly for complicated
structures containing many atoms per layer. Other symmetries, such as mirror planes etc.
are not supported by DIFFaX because they do not provide any opportunities for significant

computational speedups.

2.8.3 Layer atom data

Line 12: First record of the layer atomic structure. For each atom, the data must be entered

on a single line in the form
name id# x.rel y.rel z.rel B.iso Occ

where

name = atom name (4 character wide field),

id# = numeric specifier, (i.e. 1 for the first atom, 2 for 2nd etc...)
x_rel = x coordinate relative to a

y_rel = y coordinate relative to b

z_rel = z coordinate relative to c

B_iso = isotropic Debye-Waller factor (A?)

Occ = occupancy factor (must be between 0 and 1)

Legal atom names are exactly 4 characters wide, including any spaces. A full list of the

names accepted by DIFFaX is

‘H 2 ‘H. * ‘D > ‘H1-’ ‘He ’ ‘Li ~’ ‘Li1l+’ ‘Be ’ ‘Be2+’ ‘B’
‘C 2 ‘C. PN ‘0O ’ ‘01-’ ‘02=> ‘F ’ ‘F1-> ‘Ne ’ ‘Na °’
‘Nal+’ ‘Mg ° ‘Mg2+’ ‘Al ° ‘A13+’ ‘Si > ‘Si. ’ ‘Si4+> ‘P’ ‘S
‘€1’ ‘Cli-’ ‘Ar > ‘K’ ‘K 1+’ ‘Ca ’ ‘Ca2+’ ‘Sc ’ ‘Sc3+’ ‘Ti

J J

‘Ti2+’ ‘Ti3+’ ‘Ti4+’> ‘V ‘V 2+7 ‘V 3+ ‘V 5+ ‘Cr °’ ‘Cr2+’ ‘Cr3+
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‘Mn  °’ ‘Mn2+’ ‘Mn3+’ ‘Mnd+’ ‘Fe ’ ‘Fe2+’ ‘Fe3+’ ‘Co ’ ‘Co2+’ ‘Co3+’

‘Ni 7 ‘Ni2+’ ‘Ni3+’ ‘Cu ’ ‘Cul+’ ‘Cu2+’ ‘Zn > ‘Zn2+’ ‘Ga ’ ‘Ga3+’
‘Ge 7 ‘Ge4+’ ‘As ’ ‘Se ’ ‘Br ’ ‘Brl-’ ‘Kr ’> ‘Rb ’ ‘Rbi+’ ‘Sr ?
‘Sr2+’ ‘Y > Y 3+ ‘Zr ? ‘Zr4+’ ‘Nb  ’ ‘Nb3+’ ‘Nbb5+’ ‘Mo > ‘Mo3+’
‘Mo5+’ ‘Mo6+’ ‘Tc ’ ‘Ru ’ ‘Ru3+’ ‘Rud4+’ ‘Rh ’ ‘Rh3+’ ‘Rh4+’ ‘Pd
‘Pd2+’ ‘Pd4+’ ‘Ag ’ ‘Agl+’ ‘Ag2+’ ‘Cd ’ ‘Cd2+’ ‘In ’ ‘In3+’ ‘Sn ’
‘Sn2+’ ‘Sn4+’ ‘Sb  ’ ‘Sb2+’ ‘Sbbs+’ ‘Te ’ ‘I > ‘T 1-° ‘Xe 7 ‘Cs
‘Csi+’ ‘Ba °’ ‘Ba2+’ ‘La ’ ‘La3+’ ‘Ce ’ ‘Ce3+’ ‘Ced+’ ‘Pr °’ ‘Pr3+’
‘Pr4+’ ‘Nd ° ‘Nd3+’ ‘Pm > ‘Pm3+’ ‘Sm > ‘Sm3+’ ‘Eu ’ ‘Eu2+’ ‘Eu3+’
‘Gd ’ ‘Gd3+’ ‘Tb °’ ‘Tb3+’ ‘Dy ’ ‘Dy3+’ ‘Ho ’ ‘Ho3+’ ‘Er °’ ‘Er3+’
‘Tm > ‘Tm3+’ ‘Yb ’ ‘Yb2+’ ‘Yb3+’ ‘Lu °’ ‘Lu3+’ ‘Hf > ‘Hf4+’> ‘Ta °?
‘Tab+’ ‘W > ‘W 6+’ ‘Re ’ ‘Os °’ ‘0s4+’ ‘Ir °’ ‘Ir3+’ ‘Ird4+’ ‘Pt
‘Pt2+’ ‘Pt4+’ ‘Au ’ ‘Aul+’ ‘Aud+’ ‘Hg ° ‘Hgl+’ ‘Hg2+’ ‘Tl ° ‘Tli+’
‘T13+’ ‘Pb > ‘Pb2+’ ‘Pb4+’ ‘Bi ’ ‘Bi3+’ ‘Bib+’ ‘Po ’ ‘At ’> ‘Rn ’
‘Fr ’ ‘Ra ’ ‘Ra2+’ ‘Ac > ‘Ac3+’ ‘Th > ‘Th4+’ ‘Pa ’ ‘U > ‘U 3+
‘U 4+’ ‘U 6+’ ‘Np °’ ‘Np3+’> ‘Npd+’ ‘Np6+’ ‘Pu > ‘Pu3+’ ‘Pud+’ ‘Pub+’

In DIFFaXversion 1.80, atom names are case insensitive. Thus ‘SI ’ and ‘Si ' are
equivalent.

An example data line for an atom might be
C 1 -0.333333 -0.166667 -0.125 1.0 1.0

This specifies that the first atom is neutral carbon, ‘C,’, (‘C’ followed by 3 spaces), at cell
position (-0.333333 -0.166667 -0.125) relative to a, b and c, with Debye-Waller By, factor of
1.0A2, and occupancy of 1. Although DIFFaX ignores leading spaces in data lines, care must
be taken to ensure that the first non-blank character and the three succeeding characters,

including blanks, are part of the atom name. The data line
C 1 -.333333 -.166667 -.125 1.0 1.0

would imply that the atom type is ‘C 1 7 (z.e. ‘C1y’). This would generate an error, since

DIFFaX would become confused about the subsequent arguments on the line. The data line
C 111 -.333333 -.166667 -.125 1.0 1.0

would imply that the first atom was of type ‘C,11’, with an id number of 1. The subsequent
parameters would be read correctly, but DIFFaX would be unable to find atomic scattering
data for ‘C_,11’ in the file data.sfc and would display an error message and stop running.
The atom id number is simply a label to help you distinguish between identical atom
names. DIFFaX uses these labels when it generates error messages, to identify which atom’s
data is suspect. The numbers do not need to be consecutive, and the same number can be
used more than once, although this entails the risk of creating confusion if error messages

are generated.
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It is usual to enter the atomic relative coordinates so that they are within the range 0 to 1.
However, DIFFaX will accept numbers beyond these bounds. Internally, DIFFaXtruncates
coordinates to the 0-1 range.

Coordinates can also be entered as fractions, thus
c1-1/3 -1/6 -1/8 1.0 1.0

is acceptable.

The isotropic By, factors are in A2 units, and are equivalent to 872U, where Ui, is the
mean square atomic vibration amplitude. The B, factors must not be negative.

The atom occupancy must be between 0 and 1. DIFFaX carries out a rudimentary check
for other atoms that may be on (or near) the same position, including those atoms in po-

tentially neighboring layers, which cumulatively might imply a site occupancy greater than 1.

Lines 13 to 13 4+ no_atoms(layer 1): Data for the remaining atoms in layer 1, entered as for
line 12.

2.8.4 Second Layer.

Line 14 + no_atoms(layer 1): Header for the second layer. If it is structurally distinct from
layer 1, it must read LAYER 2. If it is structurally identical to layer 1, then the header can
be written LAYER 2 = 1. In this instance, no symmetry or atomic coordinate data is needed
and the next line can continue with data for layer 3, or, if there are no more layers, the next
section.

Line 15 + no_atoms(layer 1): If structurally distinct from layer 1, then enter symmetry of
the layer structure, as for line 11.

Lines 16 + no_atoms(layer 1) to 16 + no_atoms(layer 1) 4+ no_atoms(layer 2): Layer atomic
structure data, as for line 12.

Continue adding data for the number of layers specified in line 8.

2.8.5 Examples of the layer structure data section.

Layer structure data describing clustered faulting in diamond might look like

LAYER 1

None

C 1 -0.333333 -0.166667 -0.12
C 2 0.333333 0.166667 0.12

LAYER 2

None
C 1 0.333333 0.166667 -0.125 1.0 1.0
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C 2 -0.333333

LAYER 3

None

C 1 -0.333333
C 2 0.333333
LAYER 4

None

C 1 0.333333
C 2 -0.333333

The same data could be

LAYER 1
CENTROSYMMETRIC

C 1 -1/3 -
LAYER 2
CENTROSYMMETRIC

C 1 1/3
LAYER 3 =1

LAYER 4 = 2

1/6

1/6

-0.166667

-0.166667
0.166667

0.166667
-0.166667

-1/8

-1/8

entered as

1.0

1.0

0.125 1.0 1.0

-0.126 1.0 1.0
0.125 1.0 1.0

-0.125 1.0 1.0
0.125 1.0 1.0

1.0

1.0

and would run significantly faster, because DIFFaX will now take advantage of the center

of symmetry of the layers, and only two layer structure factors need to be computed. Here,

we have exploited the fact that layers 1 and 3, and layers 2 and 4, are structurally identical,

and therefore have the same layer scattering factors. With the second data set, DIFFaX

knows that it needs to compute only the real components for 2 layer structure factors at

each reciprocal lattice point hkl. With the first data set, DIFFaX will compute four complex

scattering factors. For structures with many atoms per layer, such as zeolites, a significant

speedup can be obtained if centers of symmetry and layer equivalences can be spelled out

in the data file. However, in the author’s experience, errors can easily creep into such

simplifications. For example, the hypothetical centrosymmetric layer

LAYER 1
None

can be optimized to

LAYER 1
centrosymmetric

0 1 -0.2 -0.2
Si 2 0.0 0.0

Note that the occupancy of the Si

-0.125
0.0

(SN
[oNoNe]

[eNe]

=
[oNoNe]

O

[$ e

" atom at the origin has been halved, since it is

shared by the two centrosymmetric halves of the layer cell.
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2.9 STACKING section.

2.9.1 STACKING header.

Line N = 13+2xn + no_atoms(layer 1) 4+ no_atoms(layer 2) + ... + no_atoms(layer n):
Header for the stacking definition data. This line must be the keyword STACKING. It can be

written in upper or lower case. No abbreviation is accepted.

2.9.2 Layer sequencing.

Line N + 1: Describe the layer sequencing in the crystal. There are two options, EXPLICIT
and RECURSIVE. EXPLICIT indicates that diffraction intensities are to be calculated for a
crystal containing a unique, fixed sequence of layers, which will be described by the user in
the lines that follow. RECURSIVE indicates that diffraction intensities are to be calculated for
a statistical ensemble of crystallites, each with a distinct stacking sequence, but weighted by

the probability that such a sequence will occur.

2.9.3 EXPLICIT layer sequencing.

Line N + 2: Define the layer sequence. If EXPLICIT has been specified in the previous line,

this can be entered as an explicit sequence of layers, such as

112122232323211133333211232123232
2332321113333321

The list can occupy more than one line, but the data should be confined to 200 characters
per line, including spaces, otherwise some of the layer data will be skipped, or misread. The
maximum number of explicit layers that can be defined has been set at 5000. The explicit
list must not contain transitions which have zero probability (as defined in the TRANSITIONS
section, next), as DIFFaX treats this as an error and will stop running. Alternatively, DIF-

FaX can be asked to generate a sequence of M layers automatically (M < 5000), by specifying
RANDOM M

The probability that a specific layer to layer transition will occur in the sequence will be
weighted by the transition probabilities listed in the TRANSITIONS section, described next.
If you are curious about the sequence that the computer generated, this will be listed in the
DUMP file, which can be requested at run-time (see sections 3.5 and B.3).

If the layer sequencing is specified as RECURSIVE, then this line contains the number of
layers that the crystal is to contain. Any number larger than M > 1022, will be treated as
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infinite !. Alternatively, an infinite number can be specified by the keyword INFINITE.

2.9.4 Examples of the STACKING data section.

Typical STACKING data sections might look like

{consider every possible permutation of a large number of layers}
STACKING
recursive
infinite

or

{include every possible permutation of 250 layers}
STACKING

recursive

250

or

{generate a single random sequence of 250 layers}
STACKING

explicit

random 250

or

{140 layers explicitly sequenced as follows...}

STACKING

explicit
112422232323211133333211223323
232123222332324113333321332321
112124121233333412212123322233
233424211111111111212233232111
11132131344423211133

2.10 TRANSITIONS section.

2.10.1 TRANSITIONS header.

Line N + 3: Header for the stacking transition data. This line must be the keyword
TRANSITIONS, and is case-insensitive.

!There is, in fact, a good reason for this strange number, 1022. For the EXPLICIT option, DIFFaX must compute
the (M + 1)th power of a complex matrix T, i.e. TM+1 This can be computationally expensive. In the interests of
efficiency, this matrix power can be computed quickly by first representing the value of M + 1 in binary format, and
then computing and storing the values of T, T2, T#, T® etc... by successive squaring. TM*! can then be computed
by multiplying the appropriate powers of T, the relevant powers being given by the binary flags. In DIFFaX the
limit has been set to 10-bit representation, thus the largest value that M+1 can have is 2'° — 1 = 1023.
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2.10.2 Layer 1 to layer 1 transition data.

Line N + 4: Stacking data for layer 1 to layer 1 transitions. The data record is usually in

the form
alpha ij Rx_ij Ry.ij Rz_ij

where

alpha_ij = stacking transition probability (between 0 and 1),
Rx_1j = x component of stacking vector (relative to a),
Ry_ij = y component of stacking vector (relative to b),

Rz_ij = z component of stacking vector (relative to c)

a, b, and c are the cell constants defined on line 6 of the data file (see section 2.7.2 on
page 11).
An optional set of anisotropic Debye- Waller-type factors, C1, Cos, Cs3, Cia, Ci3, Cos,

can be specified in parentheses after the first 4 numbers, i.e.
alpha ij Rx.ij Ry.ij Rz.ij (C11 C22 €33 C12 C13 C23)

For the want of a better term, and for the author’s amusement, these C;; coefficients shall be
referred to as the Fats- Waller factors in this manual. Note that the ordering of the C;; terms
has been modified from that used in versions of DIFFaX prior to version 1.80. Previously, the
ordering of the cross-terms had been “cyclic”, i.e. C11 C22 C33 C12 €23 C31. However,
it turns out that by convention, Debye- Waller anisotropic temperature factor cross-terms
are always listed in “anti-cyclic” order in the literature, that is, in the order By, Bas, Bss,
Big, Bi3, Bos 1. To comply with this convention, DIFFaX now reads the Fats- Waller factors
“anti-cyclically”.

As for the atomic Debye- Waller factors, the Fats-Waller temperature factors must be in
units of A2. The Fats- Waller factors are equivalent to specifying an ellipsoidal error spread
for the stacking vectors R;;. These are useful for modeling systems where there is some
coherence between nearest neighbor layers, but no long-range coherence, as in the case of
liquid crystals or pillared clays. If these factors are not specified, this is equivalent to setting
them all to zero.

If the stacking probability alpha_ij is zero, everything on the line after it is ignored and

set to zero.

I'Note that Cs; and Ci3 are equivalent.
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2.10.3 Subsequent transition data.

Lines (N 4 4) to (N + n*n): Stacking data for the layer i to layer j transitions. The data is

expected in the order

layer 1 to layer 1
layer 1 to layer 2

layer 1 to layer n

layer 2 to layer 1
layer 2 to layer 2

layer 2 to layer n

layer n to layer 1
layer n to layer 2

layer n to layer n

The sum of the probabilities starting from each layer must all sum to 1.0, 7.e. 37, ay; = 1.0

for each 7, otherwise DIFFaX will assume an error has been made, and will quit.

2.10.4 Examples of the stacking TRANSITIONS data section.

Typical stacking TRANSITIONS data section might look like

TRANSITIONS {Header for transitions}
{Transitions from layer 1}
0.7 0.66667 0.333333
0.3 0.0 0.0

1.0 {layer 1 to layer 1, 70% chance}
1.0 {layer 1 to layer 2, 30% chance}
{Transitions from layer 2}

0.3 0.0 0.0 1.0 {layer 2 to layer 1, 30% chance}
0.7 -0.66667 -0.333333 1.0 {layer 2 to layer 2, 70% chance}

Stacking vectors can be entered as fractions, thus

TRANSITIONS {Header for transitions}
{Transitions from layer 1}
0.7 2/3 1/3 {layer 1 to layer 1, 70% chance}

1.0
0.3 0.0 0.0 1.0 {layer 1 to layer 2, 30% chance}

{Transitions from layer 2}
0.3 0.0 0.0
0.7 -2/3 -1/3

{layer 2 to layer 1, 30% chance}

1.0
1.0 {layer 2 to layer 2, 70% chance}

Data with Fats- Waller factors might look like

TRANSITIONS {Header for transitions}
{Transitions from layer 1} {add a spread in R_z}
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0.1 0.5 0.5 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)
0.9 0.0 0.0 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)
{Transitions from layer 2}

0.9 0.0 0.0 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)
0.1 0.5 0.5 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)
or, more compactly

0.1 0.50.51.0 (0.0 0.0 1.0 0.0 0.0 0.0)

0.9 0.0 0.0 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)

0.9 0.0 0.0 1.0 (0.0 0.0 1.0 0.0 0.0 0.0)

0.1 0.50.51.0 (0.0 0.0 1.0 0.0 0.0 0.0)

2.11 Dependence of diffraction symmetry on the stacking probabilities.

It is perfectly legitimate to set a layer transition probability to be equal to 1.0, and all the
other transitions from that layer to be 0.0. This will define a perfect unfaulted structure,
and DIFFaX is capable of handling this limit. However, at this limit, the probability that
the other layers will actually exist in the crystal may become zero or undefined. This sudden
disappearance of layers from the ensemble may modify the apparent Laue symmetry of the
diffraction data relative to the faulted intermediates. This can be confusing if a series of
diffraction data for transition probabilities ranging from 0.0 to 1.0 are calculated, because
the end-members may appear to have different symmetry to the intermediate members. This
is most apparent in the selected area diffraction patterns.

The fraction of layers of type ¢ that actually occur in a crystal, g;, is given by the set of

simultaneous equations

N N
gi = Zgjaji Zgi =1 (6)

j=1 i=1
Therefore, in a two-layer crystal system where the transition probabilities are defined to be

a; = 0.9999, a5 = 0.0001
g1 — 00001, Q9o = 0.9999

the frequency of occurrence of layers 1 and 2 in the crystal are g; = go = 0.5 (i.e. 50% of the
crystal is layer 1, 50% is layer 2). The symmetry of the diffraction pattern will reflect the
fact that, statistically, both layer types and their associated stacking sequences, are equally
represented in the typical crystal. However, if the transition probabilities had been set up

as

11 = 107 19 = 0.0
g1 = 00, g9 — ]_O,

22



which at first glance would appear to be essentially indistinguishable from the previous ex-
ample, we find that there is no unique solution to the simultaneous equations 6. DIFFaX
resolves the ambiguity in this instance by counting the number of «;; terms, N, that equal
1.0, and assigning ¢g; = 1/N when a;; = 1.0, and g; = 0.0 when «;; # 1.0. This tactic, how-
ever, is a compromise solution. There is no a priori justification for this 1/N assumption,

since, in principle, the «a;; can all approach the value 1.0 at different asymptotic rates, i.e.

0611:1—6, 12 = €
o1 = 26, oo — 1— 26,

as € — 0. This would then give g; = 2/3, go = 1/3, and our compromise 1/N solution would
be inappropriate for this case.

In order to avoid such discontinuous (and sometimes surprising) changes of diffraction
symmetry at these limits, it is prudent not to exceed about 0.9999 for transition probability
values when computing patterns for a range of transition probabilities. Thus, instead of
the series of values a1; = 0.0,0.1,0.2...0.9, 1.0, use ay; = 0.0001,0.1,0.2...0.9,0.9999. The
transition probability sum, 37, o;;, must still come to 1.0. When computing powder patterns,
errors caused by an unexpected symmetry change can be circumvented by always specifying
the symmetry as UNKNOWN in the data file (see section 2.7.3). DIFFaX will then catch any
changes in symmetry, and modify the integration range in reciprocal space accordingly.
However, this will be of no help when computing selected area diffraction patterns, where
the change in symmetry is visually obvious from the distribution of diffraction spots. In this

case, non-zero probabilities should be used.

2.12 A more complex example. Fault clustering.

Fault clustering can be simulated by increasing the number of layer types. To describe clus-
tering in diamond, we need at least two versions of layer type 1 and at least two versions of
layer type 2, in order to differentiate between stacking histories. Thus, a layer type 1, when
preceded by a layer type 1, might connect to subsequent layers in a different manner to a
layer type 1 that is preceded by a layer type 2. This memory, or “Reichweite”, can be simu-
lated by differentiating between such layers, even though they may be structurally identical.
A data file describing clustered twin faults in diamond might look like (see appendix A.2 for

more details).

Probability of a fault in diamond cubic stacking = 10%}

data file for clustered faults in diamond}
Probability of a fault in lonsdaleite hexagonal stacking = 20%}

There are four layers in total, two of which are}
structurally distinct. They are related by a mirror}
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in the a-b plane, and are labeled layers A and A’.}
Layer 1 is an A layer which is preceded by an A layer}
Layer 2 is an A’ layer which is preceded by an A layer
Layer 3 is an A layer which is preceded by an A’ layer
Layer 4 is an A’ layer which is preceded by an A’ layer}
1 - 1 is a cubic stacking transition}

1 - 2 is a stacking fault in a cubic sequence}

1 - 3 cannot occur

1 - 4 cannot occur

2 - 1 cannot occur

2 - 2 cannot occur

2 - 3 is a hexagonal stacking transition

2 - 4 is a fault in a hexagonal sequence

3 - 1 is a fault in a hexagonal sequence

3 - 2 is a hexagonal stacking transition

3 - 3 cannot occur

3 - 4 cannot occur

4 - 1 cannot occur

4 - 2 cannot occur

4 - 3 is a stacking fault in a cubic sequence}

4 - 4 is a cubic stacking transition}

INSTRUMENTAL
X-RAY

1.5418

PSEUDO-VOIGT .89 -.32 .08 .6 TRIM

STRUCTURAL

2.52 2.52 2.06 120.0

unknown 1 {We expect -3m. Let DIFFaX decide to within a tolerance of 1%.}
4

LAYER 1
CENTROSYMMETRIC
C 1 -1/3 -1/6 -1/8 1.0 1.0

LAYER 2
CENTROSYMMETRIC
C 1 1/3 1/6 -1/8 1.0 1.0

LAYER 3

1 {layer 3 is structurally identical to layer 1}

LAYER 4 = 2 {layer 4 is structurally identical to layer 2}

STACKING
recursive
infinite

TRANSITIONS

{1}

0.90 2/3 1/3
0.10
0.00
0.00

{2}

0.00
0.00
0.80

{1-3 Transition cannot occur}
{1-4 Transition cannot occur}

O O = =
o O O O

o O O
o O O
o O O
o O O

{2-1 Transition cannot occur}
{2-2 Transition cannot occur}

[elNe]
o

o O O
o O O
o O O
o O O
o
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0.20 -2/3 -1/3 1.0

{3}
0.20
0.80
0.00
0.00

{4}
0.00
0.00
0.10
0.90 -

-3 Transition cannot occur}
-4 Transition cannot occur}

O O ON
O OO Ww
O O O+
O O O W
O O = =

.0 {4-1 Transition cannot occur}
.0 {4-2 Transition cannot occur}

N O O O
w O O O
=~ O O O
w O O O
= =, O O
o O O O

3 RUNNING DIFFaX.

Over the course of its development, DIFFaX has been tested on several different computer
systems and with many different fortran compilers. DIFFaX has been written so that its
operation is, as far as is possible, independent of the computer’s operating system. There
are two ways to run DIFFaX. (i) It can be run interactively, whereby the user is expected to
respond to certain prompts via the keyboard, or (ii) it can be run using a control file, which
is a text file containing pre-composed answers to DIFFaX’s prompts (see section 5 on page 40
for a fuller description of control files). In order to run correctly, DIFFaX expects to find the
standard scattering factor data file data.sfc, and (if used) the control file control.dif, in
the same directory as the executable DIFFaX program. If the user wishes to run DIFFaX
interactively, the control file control.dif must be renamed or removed, otherwise DIFFaX
will read it by default. There are currently two Macintosh versions, MacDIFFaX 881 and
MacDIFFaX _PPC, which run on 68k-based CPUs and PowerPC-based CPUs respectively.
The MacDIFFaX programs do not need the data file data.sfc, as this data is built into

MacDIFFaX as a resource.

3.1 Invoking DIFFaX.

Once the data file has been written, DIFFaX is ready to run. On the VAX, Cray or Macin-

tosh, the DIFFaX program can usually be invoked by one of these commands

VAX VMS: run DIFFaX
unix: DIFFaX
Macintosh: “double-click” the application icon “MacDIFFaX_ 881" (or “MacDIFFaX_PPC”).
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3.2 DIFFaX start-up screen.

If all is well, the user will be greeted by a start-up message resembling

K >k K 3K 3K 3K 3K 5k 5k 5k 3k 5k 5k 5k %k %k 3K 3K 3K 3k 3k 3k 5k 5k 5k 5k %k %k XK K 3K 5K 5K 5k 3k %k %k %k >k %k %k %k >k 3k 3 5k % %k %k k k
>k >k >k 3k 5k 5k ok ok 5k 5k 5k >k >k %k >k >k >k >k 5k 5k 5k 5k >k %k >k >k >k >k >k >k >k 5k 5k 5k >k %k %k >k >k %k %k >k >k >k >k >k >k >k >k >k k

* *
* DDDD II FFFFFE FFFFFE X X *
* D D II F F aaaa X X *
* D D II FFFF FFFF a a X *
* D D II F F a aa XX *
* DDDD II F F aaa a X X x
* *

stk o ok ok oK ok ok ok 3K K K o o ok ok oK ok ok K 3K K K o ok ok ok ok ok ok K 3 K K K o ok ok ok ok ok ok K Kk K oK
sokkokokokokkkkkkkkokokokk DIFFaX V1. 801 sskskskskokskokokokokkokkkk*k
Kk o ok ok oK ok ok ok 3K K K o o ok ok ok ok ok K 3K K K o ok ok oK ok ok ok K 3 K K K o ok ok ok ok ok ok K K K K oK
sokkokckskskkokkokkokkkok 14th JULY, 1995 skokskokskskokokokokskokokokokok
Kk o ok ok oK oK ok K 3K K K o o ok ok oK ok ok K 3K K K o ok ok oK ok ok ok K 3K K K 3 o ok ok ok ok ok ok K K K K oK

A computer program for calculating
Diffraction Intensity From Faulted Crystals

Authors: Michael M. J. Treacy
Michael W. Deem

* X ¥ X ¥ ¥ x
* X ¥ X ¥ ¥ %

>k >k >k 3k 3K 3k 3k 5k 5k 3k 3k 5k 5k >k %k >k >k 5k 5k 5k 3k 3k %k %k >k >k %k %k K >k >k 5k 5k 5k 5k %k %k >k >k %k %k %k >k >k >k >k %k %k %k >k k

Enter name of structure file.

3.3 Data file name.

The user should respond by typing in the name of the file containing the structure data, and
typing a carriage return. If all is well, then, after a few moments, the following lines will

appear

Enter name of structure file.
dia.dat

Looking for structure data file ‘dia.dat’

Opening structure file ‘dia.dat’

Looking for scattering factor data file ‘data.sfc’
Opening scattering factor data file ‘data.sfc’
Enter 1 for DUMP

Note, the user’s responses are left-indented.

3.4 Data file name errors.

[t is common to get errors at this early stage. If the user mistypes the filename (i.e. dia.dot
instead of dia.dat), or the file was saved in a directory other than the one that contains
DIFFaX, then the user will get an error message that, depending on the operating system,

may look like

Enter name of structure file.
dia.dot
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Looking for structure data file ‘dia.dot’
Problems opening structure data file ‘dia.dot’
IOSTAT = 2
DIFFaX was terminated abnormally.
If the standard scattering factor data file, data.sfc is stored in a directory other than
the one that contains DIFFaX, then the user will get an error message that, depending on
the operating system, may look like

Enter name of structure file.
dia.dat

Looking for structure data file ‘dia.dat’

Opening structure file ‘dia.dat’

Looking for scattering factor data file ‘data.sfc’
Problems opening scattering factor file ‘data.sfc’
TOSTAT = 2

DIFFaX was terminated abnormally.

Make sure that the full path to the data file is correctly specified (i.e. under unix a
file path such as ../diamond/dia.dat could be specified), and that the standard scattering
factor data file data.sfc is in the same directory as DIFFaX (unless the user is using the
bare bones Macintosh version MacDIFFaX).

3.5 Generating a dump file.

If there were no problems opening the data files, the next step is to decide whether or not
to generate a dump of the data file, as DIFFaX interpreted it. If this is the first time that
this file is being run, it is a good idea to create a dump file, just to make sure there are no
surprises. Responding with a ‘1’ will generate a dump. Anything else will not generate a
dump. DIFFaX then reads the data file and data.sfc. If there were no errors encountered,

the screen will appear as follows.

Enter 1 for DUMP
1

Reading ‘dia.dat’

‘dia.dat’ read in.

Reading scattering factor datafile ‘data.sfc’. . .
Scattering factor data read in.

Enter 1 for full atomic position dump

Whether or not a dump was requested, DIFFaX carries out a set of checks on the data
file, to ensure that the values entered are reasonable, or physically possible. At this stage,
if the user opted for a dump, a choice is presented whether or not to list all the atomic
coordinate data with a full listing of their scattering factor parameters, in the dump file.
Responding with a ‘1’ will give a full listing. Anything else will give a shortened listing.

Enter 1 for full atomic position dump

1

Writing data dump to file ‘dia.dmp’. . .

Enter 1 for a dump of the symmetry evaluations
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Note that the dump file has been named dia.dmp. See section 6 for a description of file

naming conventions.

3.6 Generating a dump of symmetry evaluations.

If there were no problems generating the data dump file, the user will now be asked whether
or not to create a dump of DIFFaX’s evaluation of the Laue group symmetry of the diffraction
intensities in reciprocal space. This facility is useful mainly for tracking down some of the
more mysterious errors in the layer atomic data, when the diffraction symmetry is different
to that expected. Responding with a ‘1" will give a listing of the symmetry evaluations.

Anything else will not generate a symmetry dump.

Enter 1 for a dump of the symmetry evaluations

1

Checking for conflicts in atom positions .

Evaluating point group symmetry of dlffractlon data.

Writing symmetry data to file ‘dia.sym’.

The diffraction data fits the point group symmetry ‘6/MMM’
with a tolerance of one part in 12376

Enter function number:

0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP

Note that the symmetry evaluation data file is called dia.sym. See section 6 for a

description of file naming conventions.

3.7 The main menu.

If there were no problems generating the symmetry evaluations file, the user is now provided

with five options for the type of diffraction intensity information required.

3.7.1 Intensity at a reciprocal lattice point, hkl.

Menu choice ‘0’ allows the user to calculate the intensity at a reciprocal lattice point hkl,
and will also give information about the scattering angle in degrees, the structure factors of
each layer, and the ensemble average interference wavefunctions when each of the various
layers is at the origin of the crystal. This menu allows the user to repeat the operation for
as many points as desired. The user may return to the main menu when done. An example

of a typical run is listed below

Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
0

CALCULATING INTENSITY AT A POINT.
Enter h, k, 1

100

2theta = 41.371 degrees
d= 2.1824

28



1/d = 0.45821

Layer scattering factors

£f(C 1) = ( -3.022460 , 0.0000000 )

£f( 2) = ( -3.022460 , 0.0000000 )
Average scattered wavefunctions

psi( 1) = ( -2.375548 , 0.8722551 )
psi( 2) = ( -2.375548 ,—0.8722551 )
Intensity at 1 0 0.00000 = 4.083575
Another point? (y/n)

y

CALCULATING INTENSITY AT A POINT.
Enter h, k, 1

300
3 0 0.00000 exceeds 180 degree scattering angle!
Re-enter.
Enter h, k, 1
200
2theta = 89.898 degrees
d = 1.0912

1/d = 0.91643

Layer scattering factors

£f( 1) = ( -1.438112 , 0.0000000 )
£f(2) = ( -1.438112 , 0.0000000 )
Average scattered wavefunctions

psi( 1) = ( -1.130309 ,—0.4150323 )
psi( 2) = ( -1.130309 , 0.4150323 )
Intensity at 2 0 0.00000 = 0.5914296
Another point? (y/n)

n

Enter 1 to return to function menu.
1

Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP

3.7.2 Intensity trace along a reciprocal lattice streak, from hkly to hkl;.

Menu choice ‘17 will allow the user to calculate the intensity profile as a function of [ for
given values of h and k. The results are saved to file. The user will be prompted to enter
values for h and k, the beginning, [y, and ending, [;, values of [, and the stepsize Al along
[. Naturally, the values should be such that I; > [y, and Al < Iy — ly. The user will also be
asked whether or not to use adaptive quadrature to perform the integration. If the interval
ly — ly is large, adaptive quadrature will be more accurate, although about 3 times slower
than non-adaptive. Depending on the computer, and the number of steps needed to span
the interval (equal to (I3 — ly)/Al), this calculation may take a few minutes. DIFFaX will

print out progress reports, announcing what value of [ has been reached.
Enter function number:

0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
1
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CALCULATING INTENSITY ALONG A STREAK.
Enter 1 for adaptive quadrature

1

Enter h, k, 10, 11, delta 1

1001 .01

Writing streak data to file ‘dia.str’.
Reached 1 = 0.04000
Reached 1 = 0.09000
Reached 1 = 0.14000
Reached 1 = 0.19000
Reached 1 = 0.24000
Reached 1 = 0.29000
Reached 1 = 0.34000
Reached 1 = 0.39000
Reached 1 = 0.44000
Reached 1 = 0.49000
Reached 1 = 0.54000
Reached 1 = 0.59000
Reached 1 = 0.64000
Reached 1 = 0.69000
Reached 1 = 0.74000
Reached 1 = 0.79000
Reached 1 = 0.84000
Reached 1 = 0.89000
Reached 1 = 0.94000
Reached 1 = 0.99000

Streak data file, ‘dia.str’ written to disk.

Enter 1 to return to function menu.

1

Enter function number:

0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP

Note that the streak data file is called dia.str. See section 6 for a description of file
naming conventions. The file dia.str is written out in tab-delimited text format. Each line

contains the following information

‘l-value’ tab ‘intensity’ carriage return

3.7.3 Integrating intensity along a streak, within an interval hkly to hkl;.

Menu choice ‘2" will allow the user to calculate the integrated intensity between two [ values
for given values of h and k. The user will be prompted to enter values for A and k, and the
beginning and ending values of [. The user will also be asked whether or not to use adaptive
quadrature to perform the integration. If the interval [; — [ is large, adaptive quadrature
will be more accurate, although about 3 times slower than non-adaptive. Typical output

will look like the following.

Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
2

INTEGRATING INTENSITY IN AN INTERVAL ALONG 1.

Enter 1 for adaptive quadrature.
1

30



Enter h, k, 10, 11

00 .95 1.05

Integrated intensity =  12.354973
Enter 1 to integrate another interval.
1

INTEGRATING INTENSITY IN AN INTERVAL ALONG 1.
Enter 1 for adaptive quadrature.

0
Enter h, k, 10, 11
00 .95 1.05
Integrated intensity = 12.354973
Enter 1 to integrate another interval.
1

INTEGRATING INTENSITY IN AN INTERVAL ALONG 1.
Enter 1 for adaptive quadrature.

1

Enter h, k, 10, 11
0 0 .999 1.001

Integrated intensity = 11.134940

Enter 1 to integrate another interval.
0

Enter 1 to return to function menu.

1

Enter function number:

0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP

If the interval [; — [ is small, as in the above example, adaptive and non-adaptive quadra-
ture usually give similar results. However, full adaptive integration takes significantly more
time. In the above example, the reciprocal lattice point 001 is a sharp spot, thus intensity
varies rapidly in the vicinity of this spot. Although the adaptive algorithm senses the rapid
variation and adjusts its integration stepsize accordingly, the result is not necessarily more
accurate: the non-adaptive algorithm is robust enough for this example. However, if [ — [ is
too large, the answers may diverge. The cautious user should explore the interaction between

the stepsize [ — [y and the need for full adaptive integration.

3.7.4 Selected area diffraction pattern.

Menu choice ‘4’ will allow selected area diffraction patterns to be calculated. This option is

most useful for calculating kinematical electron diffraction patterns.

Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
4

CALCULATING SELECTED AREA DIFFRACTION PATTERN.

Enter 1 for adaptive quadrature.

1

Choose a plane in reciprocal space to view.
the 1l-axis is included by default.

1: k =0. 2: h = 0. 3: h = k. 4: h = -k.

2

Enter maximum value of 1.

2

Choose the bit-depth of the image.
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8: - 8-bits 16: - 16-bits
16
File will be saved in unsigned 16-bit format.
Choose intensity scaling
0: - Logarithmic 1: - Linear
1
Enter a brightness (must be +ve)
1 - scales intensities to the range 0 - 32767
10 - scales intensities to the range 0 - 327670,
but values above 65535 will be saturated

5

h= 0k= 0 ’dia.dat’

1= -0.00781 intensity = 0.00000

1= 0.08594 intemnsity = 0.13091E-01
1= 0.17969 intensity = 0.32829E-02
1= 0.27344 intensity = 0.14872E-02
1= 0.36719 intensity = 0.87177E-03
1= 0.46094 intensity = 0.60308E-03
1= 0.55469 intensity = 0.48016E-03
1= 0.64844 intensity = 0.44465E-03
1= 0.74219 intensity = 0.50383E-03
1= 0.83594 intensity = 0.80688E-03
1= 0.92969 intensity = 0.33175E-02
1= 1.02344 intensity = 0.94814E-02
1= 1.11719 intensity = 0.39026E-03
1= 1.21094 intensity = 0.92740E-04
1= 1.30469 intensity = 0.34490E-04
1= 1.39844 intensity = 0.16146E-04
1= 1.49219 intensity = 0.88008E-05
1= 1.58594 intensity = 0.53895E-05
1= 1.67969 intensity = 0.36399E-05
1= 1.77344 intensity = 0.26848E-05
1= 1.86719 intensity = 0.21521E-05
1= 1.96094 intensity = 0.18708E-05
h= 0k= 1 ’dia.dat’

1 = -0.00781 intemnsity = 0.63827E-01
1= 0.08594 intemnsity = 0.73861E-01
1= 0.17969 intensity = 0.11971

1= 0.27344 intensity = 0.29790

1= 0.36719 intensity = 0.35620

1= 0.46094 intensity = 0.92463E-01
1= 0.55469 intensity = 0.27839E-01
1= 0.64844 intensity = 0.61255E-03
1= 0.74219 intensity = 0.65866E-02
1= 0.83594 intensity = 0.85806E-02
1= 0.92969 intensity = 0.96500E-02
1= 1.02344 intensity = 0.12521E-01
1= 1.11719 intemnsity = 0.20760E-01
1= 1.21094 intensity = 0.50273E-01
1= 1.30469 intensity = 0.18049

1= 1.39844 intensity = 0.15803

1= 1.49219 intemnsity = 0.82232E-01
1= 1.58594 intensity = 0.86818E-01
1= 1.67969 intensity = 0.52458E-01
1= 1.77344 intensity = 0.68915E-02
1= 1.86719 intensity = 0.99358E-03
1= 1.96094 intensity = 0.69756E-04
h= O0k= 2 ’dia.dat’

1 = -0.00781 intensity = 0.92443E-02
1= 0.08594 intensity = 0.10797E-01
1= 0.17969 intensity = 0.17989E-01
1= 0.27344 intensity = 0.46839E-01
1= 0.36719 intensity = 0.59557E-01
1= 0.46094 intensity = 0.16694E-01
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1= 0.55469 intensity = 0.55018E-02
1= 0.64844 intensity = 0.13381E-03
1= 0.74219 intensity = 0.16145E-02
1= 0.83594 intensity = 0.23738E-02
1= 0.92969 intensity = 0.30345E-02
1= 1.02344 intensity = 0.44995E-02
1= 1.11719 intensity = 0.85570E-02
1= 1.21094 intensity = 0.23813E-01
1= 1.30469 intensity = 0.98215E-01
1= 1.39844 intensity = 0.98521E-01
1= 1.49219 intensity = 0.58444E-01
1= 1.58594 intensity = 0.69768E-01
1= 1.67969 intensity = 0.47128E-01
1= 1.77344 intensity = 0.68275E-02
1= 1.86719 intensity = 0.10684E-02
1= 1.96094 intensity = 0.00000

Writing SADP data to file ’dia.sadp7’.
266 x 256 pixels: 16 bits deep.
Enter 1 to return to function menu.

1
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP

Figure 1: Selected area electron diffraction pattern simulation for diamond/lonsdaleite, showing the
0kl spots for a diamond-lonsdaleite stacking fault probability of 0.3. (See data file in section A.1).

The user is first asked to choose a plane in reciprocal space to view. Choosing ‘1’ views
the plane containing h0l spots; ‘2’ the plane containing Okl spots; ‘3’ the plane containing hhl
spots and ‘4’ the plane containing hhl spots. Then the user is asked to enter the maximum
value of [ to go out to. The maximum values of h and k£ will be automatically defined by this

[ value, since the calculated diffraction pattern will be square. The user specifies whether an
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8 bit or a 16 bit pixel depth is required. The user is then asked whether or not to save the
intensity data on a linear or logarithmic scale, by entering ‘0’ or ‘1’ respectively. In linear
mode, an intensity scaling factor can be specified. A factor of 1 means that the intensity
range (excluding the zero order beam) will be compressed so as to fit within the range 0
to 255 (8 bit binary) or 0 to 32767 (signed 16 bit binary)!. A factor of 10 means that the
intensity range will be fitted within the range 0 to 2550 (or 0 to 327670), but all values above
255 (32767) will be saturated, and will be set equal to 255 (32767). Since the calculation
may take a little while, DIFFaX prints out a progress report, listing the current value of hkl
it has reached. Note that the selected area diffraction pattern data file is saved as dia.sadp.
See section 6 for a description of file naming conventions. The file dia.sadp is saved as an
unformatted binary file. Each pixel is saved either as an 8 bit number between 0 and 255 or
a 16 bit number between 0 and 32767. The image size is 256 x 256. To display the file the
user needs a graphics utility program that can open such binary files. Figure 1 shows the

selected area diffraction pattern, dia.sadp, as printed from the Macintosh program Image?.

3.7.5 Powder pattern.

Menu choice ‘3’ will allow the user to calculate the powder pattern within a range of 26 values.
The user will be prompted for the beginning and ending 26 values, and the 26 stepsize. Then
the user will be asked whether or not to use full adaptive quadrature on the broad peaks.
When the fault probabilities are high (i.e. close to 50%) it is usually safe to ignore the full
adaptive quadrature option. However, there is always the risk of errors near any sharper
intensity features that may not have been anticipated. Next the user is asked whether or
not to use full adaptive quadrature over all [ values on the hk rows known to contain sharp
peaks. DIFFaX attempts to establish which values of hk are rows of sharp spots. These will
always be integrated full-adaptively. If the reply is ‘1’ to this question, DIFFaX will employ
full-adaptive integration over all [ values, even though most of the intensity is contained
near the sharp spots, with relatively nothing in between. Avoiding full adaptive quadrature
speeds up the calculation a little. However, there is the risk of integration errors, which may
result in some sharp peaks being missed altogether. It is safest always to select full-adaptive
quadrature for both these options. Where computation speed is an important criterion and

a large series of calculations are to be carried out, it would be prudent to compare the

'DIFFaX stores the 16-bit data as two sequential bytes. The Fortran code will have to be modified if reverse byte
ordering is required.

2Image is an image-processing program for the Macintosh (requires 8-bit video), originally written by Wayne
Rasband, National Institutes of Health, Bethesda, MD. The Image program, including Macintosh THINK pascal
source code and documentation, is in the public domain and may be freely copied and distributed. Image can be
obtained via anonymous ftp from zippy.nimh.nih.gov[128.231.98.32]. Enter “anonymous” as the user name, and
your email address as the password. The /pub/nih-image directory contains the latest version of Image.

34



results using the adaptive and non-adaptive options, and explore how they interact with
the 26 stepsize. Making the stepsize too small will also slow up the calculation. For most
calculations, it is a matter of trial and error to establish the best combination of parameters.
Because this is a time consuming calculation, DIFFaX will periodically print out a progress
report, announcing the values of h and k reached. When finished, DIFFaX will inspect the
intensities calculated, particularly those near the origin, where the intensities can swamp
the values at other angles. These will be suppressed if the TRIM option was included in the
instrumental broadening input of the structure data file. If the data file has requested it, an
instrumental broadening function will be applied to the trimmed data. The 260 values, the
raw data, and the broadened data are then written to a ‘.spc’ file. If running interactively,

DIFFaX will then end. Example screen output is listed below.

Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
3

CALCULATING POWDER DIFFRACTION PATTERN.
Enter angular range:
2theta min, 2theta max, 2theta increment.
0 170 0.05
Enter 1 for adaptive quadrature on broad peaks.
1
Enter 1 for adaptive quadrature over all 1 values
on rows with "sharp" spots

1

Integrating along 1 at 0 0 ‘dia.dat’
Full adaptive integration

Integrating along 1 at 1 0 ‘dia.dat’
Full adaptive integration

Integrating along 1 at 1 1 ‘dia.dat’
Full adaptive integration

Integrating along 1 at 2 0 ‘dia.dat’
Full adaptive integration

Integrating along 1 at 2 1 ‘dia.dat’

Full adaptive integration

Adding pseudo-Voigt instrumental broadening .
Writing spectrum data to file ‘dia.spc’
Spectrum written.

DIFFaX ended normally.

The file dia.spc is written out in tab-delimited text format. Each line contains the

following information

‘20 degrees’ tab ‘unbroadened intensity’ tab ‘broadened intensity’ carriage return

The broadened intensity is not written if the data file specified NONE in the line for instru-

mental broadening type.
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Figure 2: MacDIFFaX “Open data file...” dialog box.

3.8 Running MacDIFFaX on the Macintosh.

DIFFaX is usually distributed by the author on a double-sided 1.4MB-formatted Macintosh
diskette. There are two Macintosh-compatible precompiled versions of DIFFaX supplied on
this diskette, named MacDIFFaX 881 and MacDIFFaX PPC. These were compiled using
the Language Systems MPW fortran compilers for Motorola 68k and PowerPC processors
respectively. MacDIFFaX_881 will run on a Macintosh II style machine, with a 68020, 68030
or 68040 CPU, equipped with a 68881, 68882 or 68883 math co-processor. MacDIFFaX_881
will not run on the PowerMac machines — MacDIFFaX_PPC is needed for the PowerMac. To
maintain compatibility with the mainframe version, MacDIFFaX_881 and MacDIFFaX_PPC
are bare-bones applications, and thus, regretfully, do not take much advantage of the Mac-
intosh interface. They are System 7 compatible, and can run in the background. There

are a few minor changes to the interface described previously. In the discussion below,
“MacDIFFaX” refers generically to either “MacDIFFaX 881" or “MacDIFFaX _PPC”.

e The file data.sfc is built into MacDIFFaX as a resource, and therefore is not needed.

e If the user is running interactively, the data file is selected using the Macintosh “Open
File” dialog box (see Fig. 2). Output files will be saved to the same directory as the
input data files.
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e When running with the control file control.dif, the behavior of MacDIFFaX is iden-
tical to that described above for the unix version. However, if data files are not stored
in the same directory as MacDIFFaX, then the full path names should be specified in

the control file, i.e. Hard Disk:Diamond folder:dia.dat, instead of just dia.dat.

e The default value of the “detune” parameter in MacDIFFaX is 0.001. Ordinarily, this
parameter need never be changed (see discussion in Section 8.3 on page 49). To change
the detune parameter, you need to use a Macintosh resource editing tool, such as

Resedit™ or Resorcerer™, to modify a string resource in MacDIFFaX (see below).

3.8.1 Modifying the “detune” parameter in MacDIFFaX.

Launch Resedit and open the MacDIFFaX application. The resources used by MacDIFFaX

should appear in a window as shown below.

=[[I=—— MacDIFFad_PPC E_E§|
E.'{.’é. HEI a Hou 1LAT i
S0l 1110 ZHE o1z &z
i i il ENE & e —

ETI

CODE DITL pLOG

FILE - -

FENL PICT SIZE STR#

The 2.0kl

Funk .05

brown <1 | ]
L P_I—

Figure 3: MacDIFFaX resources as viewed by Resedit™.

Open the STR# resources by double-clicking the STR# icon. The window shown below
should appear, containing the STR# resources.

Double click on the line 1050 9  ‘‘Detune Value’’ , and a dialog box
resembling the one below will appear.

The editable string 1.0e-3 is the default detune value. This can be changed to the
desired value, (i.e. to 1.0e-4, or 0.0001, which is the same thing) by typing the new value
into the edit field. The changes should be saved, and then quit Resedit. USER BEWARE:
a detune value of 0, or a value too close to zero, may produce unpredictable results. 0.001

has been found to work best for most powder pattern simulations.
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Figure 4: MacDIFFaX string resources.

4 Speeding up DIFFaX computations.

Despite the fact that the DIFFaX code is replete with tricks that attempt to speed up the
computation, DIFFaX runs can take a considerable time to finish, particularly for powder
patterns, streaks and selected area diffraction patterns. The most computationally expensive
part of the DIFFaX code is the intensity integration. For a powder pattern computation
DIFFaX cannot get away with merely sampling the intensity at integral multiples of h, k
and [, as can be done for perfectly periodic crystals. DIFFaX needs to integrate along the
reciprocal lattice vector [ in variable steps of Al such that A0 = 0(h, k,l + Al) — 0(h, k,1)
is constant. Depending on the value of Af chosen by the user, Al can be quite large
relative to the width of a typical sharp peak, particularly when [ is small or zero. To detect
reliably such sharp peaks, DIFFaX employs an adaptive 16-point Gauss-Legendre integration
algorithm. In Gauss-Legendre integration, the intensity in the interval Al is sampled at 16
points. These points are not uniformly spaced, but are carefully chosen so as to sample the
intensity optimally. The 16 intensities are added, after being multiplied by equally carefully
chosen weights. If the intensity is varying smoothly, the integration can be remarkably
accurate. In adaptive integration, the region Al is further subdivided into two regions, each
of length Al/2, and the 16-point integration is re-applied to each region, and the results
added. If the first 16-point result, and the subsequent 32-point result give identical answers
within some error limit, DIFFaX moves on to the next region. If the answers do not agree,
usually because the intensity varies rapidly within the region Al, the regions are repeatedly

subdivided and re-integrated until a self-consistent answer is obtained. Adaptive integration,
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Figure 5: MacDIFFaX string resource for modifying the “detune” parameter.

therefore, takes at least three times as long to perform as non-adaptive integration (at least
48 intensity samplings versus 16 intensity samplings).
The user can control whether or not DIFFaX uses adaptive integration. The user is

prompted twice
Enter 1 for adaptive quadrature on broad peaks.

and

Enter 1 for adaptive quadrature over all 1 values

on rows with ‘sharp’’ spots

Entering a “0” in response to these prompts disables adaptive integration.

DIFFaX attempts to make intelligent guesses as to when it is encountering a row of
sharp spots, so generally it is safe to answer “0” to the latter prompt. DIFFaX will always
perform adaptive integration on the sharp peak itself, but will ignore the vast expanses of
low intensity that lie between them. However, there is a danger to switching off adaptive
integration on broad peaks. In those instances when fault probabilities are low, peaks that
are normally susceptible to broadening, can in fact be quite sharp. It generally is safe to
switch off adaptive integration for broad peaks, but the user should be aware that there are

risks at the extreme values of stacking probability.
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DIFFaX can store spectra with up to 20,000 points. The number of points, IV, is given by
N = (Omax — Omin)/A6. The time-conscious user should refrain from overzealously specifying
unnecessarily small values for Af. Clearly Af should be somewhat smaller than the instru-
mental peak broadening half-width that is specified in the data file. However, there is usually
little to be gained by making A# significantly less than about one-tenth the instrumental
peak broadening half-width. In fact, a ratio of about one-third or one-fourth will usually be
adequate for all but the most demanding graphics. Smaller values of Af will increase the
number of regions to be integrated and will proportionately slow down the computation.

Another rate-limiting factor is the number of layers, n. The matrix inversion takes O(n?)
to compute. Further, the computation time is linear in the number of atoms in a layer.

If a layer is centrosymmetric, specifying CENTROSYMMETRIC in the data file, and listing only
the asymmetric half of the atoms (and being careful to halve the occupancies of those atoms
that are shared by the two asymmetric halves) will speed up the computation considerably.
This is not just because there are fewer atoms, but also because the imaginary components
of the wave functions can be ignored. If all layers are centrosymmetric, this trick can more
than halve the computation time. DIFFaX does not accept other symmetry descriptions for
layer unit cells, such as rotational or mirror symmetries, because there is no significant speed
benefit.

When two layers are structurally identical, but merely stack differently, making use of

the layer equivalence description (see section 2.8.4 on page 16),
LAYER 2 =1

can save a little time.

Finally, be warned that the PSEUDO-VOIGT peak-broadening option is computationally
expensive (section 2.6.8, page 9). Unless it is vitally necessary, use the fixed-width GAUSSIAN
(section 2.6.6, page 7) or LORENTZIAN (section 2.6.7, page 8) options, as these are substan-
tially faster.

5 DIFFaX control files.

In normal use, DIFFaX will be used to run batches of data files, usually with differing
stacking probabilities. After the run, the powder diffraction simulations are compared with
data for the best fit. A typical run might require 11 files for stacking probabilities ranging
from 0.001 to 0.999 inclusive (see the discussion in section 2.11 on page 22 for an explanation
of why I deliberately avoided specifying the range 0.0 to 1.0). Such a computation can take
DIFFaX a considerable time, which makes the interactive mode an unsuitable way to execute

such a run.
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DIFFaX provides a way to run batch jobs by storing pre-composed answers to the DIFFaX
prompts in a control file. The control file default name is “control.dif”, and should be
stored in the same directory as the DIFFaX executable code. A simple way to create a
control file is to try a dummy run of DIFFaX, and to record the responses to the prompts.
Terminate the DIFFaX run, and create the control.dif file with the responses listed one

per line. For example, a control file for a typical powder pattern run would look like

dia001.dat {data file name}

0 {no dump file}

0 {no symmetry file}

3 {powder pattern}

0 100 .05 {theta_min, theta_max, delta_theta}

1 {do adaptive quadrature on broad peaks}

1 {do adaptive quadrature on all 1 for rows of sharp spots}
dial00.dat

0 100 .05

dia200.dat

0 100 .05

dia300.dat

0 100 .05

dia400.dat

0 100 .05

diab00.dat

0 100 .05

dia600.dat

0 100 .05

dia700.dat

0 100 .05
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1

1
dia800.dat
0

0

3

0 100 .05
1

1
dia900.dat
0

0

3

0 100 .05
1

1
dia999.dat
0

0

3

0 100 .05
1

1

end {no more files, end normally}

Note that comments {in curly braces} can be embedded in the control file. At the end
of each run on a data file, DIFFaX reads the next line for a new data file name. If it finds a
legal file name, it will re-run using the new data. A line containing the keyword “end”, tells
DIFFaX that the control file is ended. It is not fatal to leave off the keyword end, however,
erroneous, and possibly confusing, error messages will be generated.

The control file can also be used to compute the POINT, STREAK, INTEGRATE and SADP
options. Care should be taken to compose responses in the correct order, usually by trying
a dummy run of DIFFaX and recording the responses.

An example control file, with output, is given in appendix B on page 77.

6 File naming conventions used in DIFFaX.

DIFFaX tries to name output files so that it is reasonably clear from the name what the file
contains, and with which data set it is associated. If the structure data file was called name,

or name.dat then the output files will be named as follows;

name .dmp data dump file

name.sym data symmetry evaluation file
name . spc powder diffraction spectrum
name . str intensity profile along a streak

name . sadp selected area diffraction pattern
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Note that DIFFaX reads the filename from the left up to the first period (‘.”) (or space
(‘ ) on the Macintosh), and uses that as the root filename. Thus the powder diffraction
pattern file for the files dia.dat or dia, would be named equally dia.spc. If a file of
that name already exists, then DIFFaX will enumerate the filenames sequentially. Thus, if
the file dia.spc already exists, then it will name the next file dia.spcl. If, for example,
files dia.spc, dia.spcl to dia.spcl3, already exist, then the next file will be dia.spc14.
However, if the file dia.spc6 in the previous example had been deleted, then the new file
will take the available name, dia.spc6, despite the fact that the previous file had been
named dia.spc13, and therefore will be out of sequence. Similar considerations apply to

the name.dmp, name.sym, name.str and name.sadp files.

7 Compiling DIFFaX.

DIFFaX source code is contained in the three text files DIFFaX.f, DIFFaX.par and
DIFFaX.inc. DIFFaX.par and DIFFaX.inc are ‘include’ files and normally the compiler
expects them to be in the same directory as DIFFaX.f when it is compiled. DIFFaX is writ-
ten, as far as is practical, in fortran 77, using commonly found extensions, such as real*8,
rather than DOUBLE PRECISION. For legibility the source code is written using lower- and
upper-case characters. Useful FORTRAN extensions such as DO WHILE. . ., CYCLE etc.
were scrupulously avoided. Instead, the equivalent (but ugly) IF . . . GOTO construc-
tions were used. DIFFaX was developed mainly on Macintosh systems. However, DIFFaX
v1.7xx has been compiled and run successfully on various computer systems and FORTRAN
compilers. DIFFaX v1.801 has been tested on Macintosh and Silicon Graphics systems.
Small modifications need to be made to the source code in order to get DIFFaX to compile
properly on the Cray cft77 compiler. This is mainly due to cft77’s stricter adherence to
the ANSI FORTRANT77 standard, and to the fact that the Cray is a 64-bit machine, which
introduces ambiguities as to the meaning of “double precision” (see section 7.3 for further
details concerning running on the Cray).

Built-in constants used by DIFFaX, such as fixed array sizes etc. (except for the “detune”
parameter discussed in sections 3.8.1 and 8.3) are assigned in the file DIFFaX.par. The

meaning of each of the constants is explained in more detail in the DIFFaX. par file.

7.1 Binary files.

A problem can arise when writing the binary file name.sadp, which is supposed to be an
unformatted 256 x 256 x 8 bit file, exactly 65,536 bytes big. Some compilers pre-pend a

record header to each 256 byte row of data, increasing the physical length of each row of
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data. There are two ways around this problem (i) Find out the actual row length (usually
260 bytes) and open the image file as a 260 x 256 byte image (and ignore the first 4 pixels in
each row), or (i) modify the binary file open statement in the source code. In VAX fortran
the binary file open statement should have the specifier recordtype = ‘stream’ added, i.e.
the specific statement in DIFFaX.f should read

if(sa.ne.op) open(unit = sa, file = outfile, status = ‘new’,
| form = ‘unformatted’, err = 990, iostat = io_err,
| recordtype = ‘stream’)

The exact fix, however, will depend on the compiler.

7.2 Precision.

DIFFaX uses double precision (real*8) floating point variables. On most machines it will
run faster using single precision. DIFFaX has been tested most extensively using double
precision variables. There is a risk of numeric overflow in the vicinity of sharp peaks if single

precision (real*4) is used on some complicated structures.

7.3 Double Precision and the Cray.

On the Cray, however, single precision should be specified, using the ‘~dp’ cft77 compiler
option. Cray double precision is equivalent to real*16. This slows up the Cray unneces-
sarily and uses up a lot of memory. Consequently, if DIFFaX.f is compiled in unmodified
form, the cft77 compiler will flag assignment statements such as REAL*8, COMPLEX*16 and
INTEGER*4, and will generate a screed of warning messages. All variable declarations of
the form REAL*4, REAL*8, INTEGER*1, INTEGER*2, INTEGER*4, LOGICAL*1 etc. should be
replaced with the generic REAL, INTEGER, LOGICAL etc. The Cray does not recognize the
non-standard functions DCMPLX, DIMAG and DBLE. These should be replaced everywhere by
the single precision CMPLX, IMAG and REAL intrinsic functions.

7.4 The “saveall” option.

With some compilers, DIFFaX may crash with bus errors. The author has not traced
down the cause of every problem explicitly. For one compiler it had something to do with
ambiguities in the ansi77 standard about the save statement. There is, of course, the
possibility that there is an elusive bug in the DIFFaX code — perhaps an uninitialized variable
is used prematurely. The DIFFaX code has been scoured relentlessly for bugs of this kind.
However, there remains the chance that there are still insidious bugs lurking there. If you find
bugs, please let the author know about them. He will be delighted to fix them! Meanwhile,

declaring all variables to be static invariably ‘fixes’ the run-time problems. With some
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compilers, all variables can be forced to be treated as static at compile time by specifying
-saveall as a compiler option (sometimes this is specified by ‘-s’).

If your compiler does not provide a -saveall (or equivalent compiler option), then you
can uncomment the save statement at the top of the DIFFaX.inc file. DIFFaX.inc is
included in almost every subroutine in DIFFaX.f. Further, you should uncomment the save
statement at the top of those subroutines that do not include DIFFaX.inc. These subroutines
can be found by searching the file DIFFaX.f for the word “save”.

However, use of the -saveall command may significantly slow down program execution,
so it may pay to determine whether or not -saveall is needed by first compiling without
it, and making a trial run of the DIFFaX executable. Run-time messages about bus errors

are usually a hint that the -saveall statement is needed.

8 How DIFFaX works.

8.1 Diffraction Described Recursively.

DIFFaX takes advantage of the self-similarity of stacking sequences, present in periodic
objects constructed by non-deterministic layer stacking, to rapidly compute diffraction in-
tensity. A simple model of the type of recursion found in crystals is provided by a tall brick
wall that contains only one type of brick, where the bricks have been cemented in place with
flawless regularity. Neglecting the finite height of the wall, the wall has a recursive prop-
erty, namely that a brick wall is equivalent to a row of bricks plus another (displaced) brick
wall (see Figure 6). Crystals can be viewed similarly in terms of sheets of unit cells. This
recursive property is reflected in many physical properties of crystals, such as the scattered
wavefunction when such crystals are irradiated. Thus, the scattered wave function from a
crystal centered on any layer, is equivalent to the scattering contribution from that layer
plus the scattered wavefunction from the displaced crystal centered at the next layer. More

formally,
U(u) = F(u) + exp(—2miu- R) ¥(u) (7)

Mean scattered wave
function from a crystal

Contribution to wave
function from layer at origin

Figure 6: Illustration of the recursive property of periodic objects.
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Here, ¥(u) is the scattered wavefunction at reciprocal lattice vector u, F'(u) the scattering
contribution from the layer at the origin, and R is the shift between the two origins. This
equation embodies Laue’s diffraction equation, and leads immediately to a solution for the
scattered wavefunction from the whole crystal.

_ F(u)
1 —exp(—2miu- R)

¥(u) (8)

This equation tells us that there are sharp diffracted peaks at values of u = (h, k, () that
satisfy wR = hR, + kR, + [R, = 2nm, where n is an integer, and R = (R,, Ry, R.) is in
relative cell coordinates.

This recursive property can be extended to crystals containing defects. Figure 7 shows
our brick wall, now containing two types of brick arranged in homogeneous layers. In the
crystalline analog, recursion relations between the wavefunctions for crystals centered on the
two types of layers can be defined. The stacking of sheets is now determined probablistically,
by the introduction of the transition probabilities a;.

\I/Z(U) = Fz(U) + Z (0771 exp(—27rz'u . sz) \I/j (U) (9)
j=1,2

The simultaneous equations are readily solved to yield the wavefunctions ¥(u). Since
we are computing the diffraction from a statistical ensemble of crystallites, the intensity is
given by the incoherent sum

I(u)

N > i (F*(u)\ll(u)—i—F(u)\IJ*(u) - |p;.(u)|2) (10)

i=1,2

where the layer existence probability factors g; are given by equation 6. Interestingly, the
recursive property holds even when the crystal contains only a finite number of layers (see

the reprint in section B.7 for more details).

8.2 Finite layer widths.

Debye-Scherrer type peak broadening due to finite layer widths is emulated phenomenolog-
ically in DIFFaX v1.801. The proper full calculation would require integration over non-
integer values of h and k, which would be forbiddingly time-consuming. Here we present an
outline of the methodology used in DIFFaX.

A fair representation of shape-broadening can be introduced by assuming that, from
a statistical ensemble of crystallites, the average half-width of the intensity profile in the
vicinity of reciprocal lattice point A0l for an average crystal width W, along a is given by

1
11
o (11)

I =
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Figure 7: lustration of recursion in randomly faulted periodic objects.

The intensity profile is assumed to approximate a Lorentzian in shape, with half-width T'.
The Lorentzian is intended to approximate the more formally accurate ‘sinc’ function form

factor,
2

sin(mw(h — h)W,)
(W =)W,

after having averaged out the oscillations due to the presence of a spread in the W, values

(12)

in the powder sample. (Here A’ is a continuous variable whose value is in the vicinity of the
integer value h).

All crystal shapes are assumed to be rectangular (or cylindrical, depending on whether
two widths, or a diameter, were specified), so the more complicated form factors due to
special crystal morphology are ignored. When the widths W, and W, are not equal, it is
assumed that the contours of equal intensity about a peak are elliptical. This intensity profile
in the h—k plane is intercepted by the Ewald sphere at an angle that is determined by the
[-value of the reflection (see Figure 8). Thus, the half-width of the peak at scattering vector
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hkl due to shape broadening can be shown to be (for perpendicular a and b axes)

1 2 2
r— [(Qhoo) " (Qom) 1 (13)
2Qnk W, Wy
where Qnr; is the magnitude of the reciprocal lattice scattering vector at hkl, and is given
by

Qikl = (lth + bokQ -+ C()l2 + dohk’ (14)
with the constants
1
ag = ——5—
° a2 sin?(7)
1
by = 55—
0 b2 sin’(7)
1
Coy — g
—2 cos(7)
dy = ———= 15
0 absin?(y) (15)

Depending on the relative values of W, and W, and the value of [, different peaks will be
broadened differently. For non-perpendicular axes, equation 13 is modified slightly to reflect
the fact that the W, and W, measurements are not mutually perpendicular. Consequently,

the shape-broadened half-width of the peak at scattering angle 6 in the powder pattern is

A h + ksin(7) 2 kO’
I'y= —_— bo | — 16
To [ao < W cos() i Wy (16)
provided h # k = 0.

The broadening of 00! peaks is handled a little differently. When both h and k are zero,
the Ewald sphere is tangential to the plane of the shape broadening profile of the 00/ peak.

given by

This produces an asymmetrical peak with a sharp onset and a long tail, whose half-width
depends in a complicated way on the relative values of W, and W,. If W, and W, are close
in value, the tail drops off the slowest.

Despite the simplifications and approximations used, the addition of layer-width broad-
ening to powder pattern peaks still introduces a significant computational overhead to the
powder pattern calculations. In particular, shape-broadening adds an extra degree of free-
dom to the simulations that can easily overwhelm the user with data. As a rule, layer widths
should be specified as INFINITE when exploring the effects of stacking fault probabilities.
The addition of the shape broadening profiles should be reserved for final refinements of
simulations in systems that are known to have small crystallites, and where the simulations

for large crystals look promising.
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Figure 8: Geometry of the Ewald sphere intercepting a shape-broadened peak at hkl.

8.3 The “detune” parameter.

Most users will not need to modify the internal parameters used within the DIFFaX program,
and thus these have all been set at compile time and cannot be modified dynamically by
the user. These need to be changed within the file DIFFaX.par, and DIFFaX.f needs to be
recompiled. Under special circumstances, however, the “detune” parameter may need to be
adjusted by the user. What is this “detune” parameter? Why is it hidden from the user in
this way? To understand the role of the detune parameter, we must first examine what the
computer is trying to do when it integrates intensities under sharp peaks. Sharp diffraction
peaks from perfect crystals arise from a resonance condition between the incoming wave
and the diffracting lattice. Ideally, such a resonance produces a peak in intensity that can
be described as a delta function, with infinite height and essentially zero width, although
the integrated intensity under the peak is finite. True delta functions cannot be properly

represented in a computer. In particular, they cannot be detected or integrated properly. To
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help DIFFaX detect and integrate these delta functions, DIFFaX resorts to a trick whereby
the diffraction resonance is effectively detuned slightly. The Q-factor of the resonance is no
longer infinite (but still large), and importantly, the peak develops a detectable width. The
result is that the peak can be integrated by the computer. The detuning is brought about by
reducing all the stacking probabilities by a small amount, so that the sum of all transition
probabilities from any given layer is slightly less than unity. This is a mathematical trick,
and the principle behind this trick is explained in more detail in the reprint in section B.7
on page 93. The fraction by which all the stacking probabilities is reduced we refer to as the
detune parameter. One way to understand this is to examine equation 7 for the scattered
wavefunction from a perfect crystal containing only one layer type
_ F(u)
1 — exp(—2miu- R)

¥ (u) (17)

There is a resonance condition (a sharp peak) when exp(—2miu-R) = 1, when the denomina-
tor is zero. To make equation 17 more palatable to a computer, we modify the denominator

so that
F(u)

1 Qexp(—27mu- R)

where (2 is a number slightly less than unity, i.e. {2 = 1—detune. The denominator now will

¥ (u) (18)

never be zero and the real part will always be positive. Ordinarily, €2 should be unity, the
probability that a layer is followed by another identical layer. A consequence of detuning
the sharp peaks in this way, is that they are broadened slightly. This broadening becomes
apparent if one plots spectra on a log-linear scale, and can become a nuisance if background
diffuse scattering is being simulated and fitted to a power law, or if satellite peaks close to
a sharp peak are being simulated. The default value of detune is 0.001. To sharpen the
sharp peaks, the value of detune should be decreased. However, if detune is made too small,
there is a risk that DIFFaX will miss the sharp peaks, or will fail to integrate them properly.
Setting detune to zero may cause DIFFaX to fail, because of a “divide by zero” condition.
Sharp peaks will not be integrated properly. Spectra may even contain negative intensities.
Consequently, detune is kept away from casual misuse by not including it as a run time
variable.

The impact of “detune” on peak width is illustrated in Fig. 9, where the continuous line
is for detune = 1073, and the dotted line is for detune = 10~*. The peak width is reduced
by a factor of ten when detune is reduced by a factor of ten. Similarly, the peak heights
increase by a factor of ten, such that the integrated area is approximately constant. To
change detune, locate the subroutine DETUN in the file DIFFaX.f.

subroutine DETUN()
include ‘DIFFaX.par’
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Figure 9: Intensity trace along [ showing the effect of changing the parameter “detune” on the
width of the 004 peak in unfaulted GaAs (see appendix A.5, page 74).

include ‘DIFFaX.inc’

integer*4 i, j
real*8 delta

*

delta = eps3

A value of delta = 0.001 is found to be optimum.
If preferred, user can specify ‘delta’ interactively
using the following three lines.
write(op,400) ’Enter detune parameter’
read(cntrl,*) delta
if (CFile) write(op,401) delta

*¥ QQOQQ ¥ * % %

do 10 i = 1, n_layers
do 20 j = 1, n_layers
detune(j,i) = ONE - abs(delta)
20 continue
10 continue

return
C 400 format(ix, a)

C 401 format(lx, gl2.5)
end

Either, change the value delta (note eps3 is defined to be 1073, and eps4 is defined to

be 10~ etc.) to the new value required, or uncomment the five lines of code beginning with
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“C” that allow the user to set “detune” interactively. DIFFaX then needs to be recompiled.
An explanation how to change detune for the Macintosh version MacDIFFaX is given in

section 3.8.1 on page 37.
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10 Differences between DIFFaX versions 1.807 and 1.7xx

DIFFaX v1.807 behaves pretty much the same as previous versions. These are the important

differences;

1. DIFFaX v1.804 now simulates peak broadening in powder patterns due to finite crystal
dimensions perpendicular to the stacking direction. This feature requires an additional
line in the structure data file specifying the average layer widths parallel to a and b
(see section 2.7.5 on page 13). Note that broadening due to a finite number of layers
is handled differently by DIFFaX (see section 2.9, page 18).

2. The six layer uncertainty stacking factors, the Fats- Waller factors C,;;, have been re-
ordered. They must now be entered in the sequence C11 C22 C33 C12 C13 (23, as
opposed to C11 €22 €33 C12 €23 C31 (see section 2.10.1, page 19). This was done to
maintain consistency with the conventional ordering of the anisotropic Debye-Waller

temperature factors.

3. The maximum allowable length of a data line has been extended from 80 to 200 char-

acters.

4. Atom names are now case-insensitive.
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. In DIFFaX v1.805 atom coordinates and stacking vectors can be entered as fractions.
That is, “1/3” is now accepted in place of 0.3333.

. DIFFaX behaves differently when it encounters a stacking probability «;; = 1.0. DIF-
FaX now counts the number of layers N that have «; = 1.0, and assigns a layer
existence probability g; = 1/N to each of these layers. Otherwise g; = 0. See sec-
tion 2.11 on page 22 for more details. DIFFaX v1.7xx usually returned a “singular

matrix error”.

. DIFFaX v1.806 and higher can now generate 16-bit greyscale SAD patterns, as well as
8-bit patterns.

. There have been some minor bug fixes and code improvements.
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A Appendices
A.1 Example data file for random faults in diamond.

Diamond belongs to the cubic space group Fd3m. It supports twinning on the cubic {111}
planes, thus the [111] direction becomes the new DIFFaX c axis. The structure is best
represented in the hexagonal setting, where (111)cupic is equivalent to (001)pexagonal, and the
new cell axes are along [110]cupiec and [101]cupie. The (111) planes are centrosymmetric about
the origin, and two distinct forms occur in any given crystal, related by a mirror plane (or,
equivalently, a 60° rotation). When like layers stack, the sequence has (local) cubic sym-
metry. When mirror-related planes stack alternately, to form the lonsdaleite structure, the

sequence has (local) hexagonal symmetry. See figure 10 for a graphic description.

Data file dia.dat

{data file for diamond, with random hexagonal intergrowths}
{probability of cubic stacking = 70%}

INSTRUMENTAL {Header for instrumental section}
X-RAY {Simulate X-ray diffraction}

1.5418 {X-ray wavelength}

{gaussian 0.1 trim} {Instrumental broadening (much faster)}

PSEUDO-VOIGT 0.1 -0.036 0.009 0.6 TRIM {Instrumental broadening (much slower)}

STRUCTURAL {Header for structural section}

2.52 2.52 2.06 120.0 {unit cell coordinates, a, b, c, gamma}
6/MMM {hexagonal, c¢ = cubic [111]}

2 {111 sheet, plus its mirror}

infinite {Layers are very wide in the a-b plane}
LAYER 1

CENTROSYMMETRIC

C 1 -.333333 -.166667 -.125 1.0 1.0

{C 2 .333333 .166667 .125 1.0 1.0, related to 1 by -1}

LAYER 2

CENTROSYMMETRIC

C 1 .333333 .166667 -.125 1.0 1.0

{C 2 -.333333 -.166667 .125 1.0 1.0, related to 1 by -1}

STACKING {Header for stacking description}
recursive {Statistical ensemble}

infinite {Infinite number of layers}

TRANSITIONS {Header for stacking transition data}

{Transitions from layer 1}
0.7 0.666667 0.333333

.0 {layer 1 to layer 1}
0.3 0.0 0.0 .0

1
1 {layer 1 to layer 2}
{Transitions from layer 2}
0.3 0.0 0.0

.0 {layer 2 to layer 1}
0.7 -0.666667 -0.333333 .0

1
1 {layer 2 to layer 2}
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[110] view of diamond layers

Layer type 1 Layer type 2

Cubic stacking

Cubic [111]
Cubic stacking
R 21
R Hexagonall
: 12 [001]
Hexagonal stacking 1

Figure 10: [110] view of diamond/lonsdaleite layers.

A.2 Example data file describing clustered faults in diamond.

Appendix A.1 described diamond/lonsdaleite intergrowths, where the twin faults were ran-
domly dispersed throughout the crystal, without correlation. It is also possible to describe
the faulting as if there were a ‘memory’, or Reichweite, so that the stacking history plays a
role in determining the fault probability. For example, a crystal may be stacking in a cubic
sequence with a low probability that it will twin. Once twinned, however, the probability
of a fault in the new hexagonal sequence may also be low, and the crystal may continue for

some while before faulting back to a cubic sequence. Figure 11 illustrates how to describe
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such faulting by defining four layer types.

4 layers are required to describe fault clustering in diamond

Structure type A layer Structure type A’ layer

Type 1 layer Type 2 layer Type 3 layer Type 4 layer

Cubic stacking

Hexagonal stacking

cubic

-] hexagonal

cubic
Typical faulted sequence

hexagonal

cubic

hexagonal
cubic

Figure 11: [110] view showing fault clustering in diamond/lonsdaleite.

Data file Clustdia.dat

{data file describing clustered faulting in diamond}
{There are four layers in total, two of which are}

{structurally distinct. They are related by a mirror}
{in the a-b plane, and are labeled layers A and A’.}
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{Layer 1 is an A layer which is preceded by an A layer}
{Layer 2 is an A’ layer which is preceded by an A layer}
{Layer 3 is an A layer which is preceded by an A’ layer}
{Layer 4 is an A’ layer which is preceded by an A’ layer}
{1 - 1 is a cubic stacking transition}
{1 - 2 is a stacking fault in a cubic sequence}
{1 - 3 cannot occur}
{1 - 4 cannot occur}
{2 - 1 cannot occur}
{2 - 2 cannot occur}
{2 - 3 is a hexagonal stacking transition}
{2 - 4 is a fault in a hexagonal sequence}
{3 - 1 is a fault in a hexagonal sequence}
{3 - 2 is a hexagonal stacking transition}
{3 - 3 cannot occur}
{3 - 4 cannot occur}
{4 - 1 cannot occur}
{4 - 2 cannot occur}
{4 - 3 is a stacking fault in a cubic sequence}
{4 - 4 is a cubic stacking transition}
{In this file. . .}
{the probability of a fault in cubic stacking = 1-2 = 4-3 = 10%}
{ thus, 1-1 = 4-4 = 90%}
{the probability of a fault in hexagonal stacking = 2-4 = 3-1 = 20%}
{ thus, 2-3 = 3-2 = 80%}
INSTRUMENTAL
X-RAY
1.5418
PSEUDO-VOIGT .89 -.32 .08 .6 trim
STRUCTURAL
2.52 2.52 2.06 120.0
-3M {Symmetry is not necessarily 6/MMM, as there}
{may not be equal numbers of 1 layers and 4 layers}
4
infinite
LAYER 1
CENTROSYMMETRIC
C 1 -.333333 -.166667 -.125 1.0 1.0
LAYER 2
CENTROSYMMETRIC
C 1 .333333 .166667 -.125 1.0 1.0
LAYER 3 =1
LAYER 4 = 2
STACKING
recursive
infinite
TRANSITIONS
{1}
0.90 0.666667 0.333333 1.0
0.10 0.0 0.0 1.0
0.00 0.0 0.0 0.0 {1-3 Transition cannot occur}
0.00 0.0 0.0 0.0 {1-4 Transition cannot occur}
{2}
0.00 0.0 0.0 0.0 {2-1 Transition cannot occur}
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0.00 0.0 0.0 0.0 {2-2 Transition cannot occur}
0.80 0.0 0.0 1.0

0.20 -0.666667 -0.333333 1.0

{3}

0.20 0.666667 0.333333 1.0

0.80 0.0 0.0 1.0

0.00 0.0 0.0 0.0 {3-3 Transition cannot occur}
0.00 0.0 0.0 0.0 {3-4 Transition cannot occur}
{4}

0.00 0.0 0.0 0.0 {4-1 Transition cannot occur}
0.00 0.0 0.0 0.0 {4-2 Transition cannot occur}
0.10 0.0 0.0 1.0

0.90 -0.666667 -0.333333 1.0

A.3 Example data file describing faults in Faujasite.

Faujasite is a zeolite which, like diamond, has topological space group symmetry Fd3m.
Unlike, diamond, which has 8 atoms per unit cell, faujasite has 576 framework atoms. How-
ever, despite the fact that each layer contains significantly more atoms, and that the unit
cell dimensions are larger, the data file will resemble that for diamond. In place of each
carbon atom, faujasite has a 78-atom sodalite cage. The morphology of the sodalite cage
is that of a truncated cuboctahedron, or tetrakaidekahedron. Faujasite is, strictly speak-
ing, an alumino-silicate, with average framework composition, Si,Al;_,O,, where typically,
x ~ 0.75. The aluminum is essentially randomly distributed on the framework, substituting
for Si, but with the proviso that no two aluminum atoms share a bridging oxygen (Loewen-
stein’s rule). To balance the framework charge introduced by the trivalent aluminum atoms
occupying tetrahedrally coordinated sites, there are extra-framework cations, such as Na™
and KT. There is also a considerable amount of water associated with the framework. Most
of the cations and water molecules are mobile. In this data file, we assume that r = 1,
i.e. there is no aluminum. This is not a bad approximation since Al and Si have similar
x-ray scattering factors. The cations and water molecules are also ignored. Figure 12 below

emphasizes the resemblance to the diamond case described in appendix A.1.

Data file FAU.dat

{data file for Faujasite/Breck’s structure 6}

{data is good for random distribution of faults only}

{A high value of alpha(l,1) (= alpha(2,2)) implies a FAU-rich materiall}
{A low value of alpha(l,1) (= alpha(2,2)) implies a BSS-rich material}
{This file has alpha(l,1) = 0.99, and thus is FAU-rich,}

{but the crystal contains only three layers}

INSTRUMENTAL

{Radiation type = } X-RAY

{wavelength = } 1.5418

{Instrumental broadening (faster)} {Lorentzian 0.1 trim}

{Instrumental broadening (slower)} PSEUDO-VOIGT 0.1 -0.036 0.009 0.6 TRIM
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[1_10] view of faujasite layers

Layer type 1 Layer type 2

I
4‘..«&3’

'.h J&'ﬁl 7
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.
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s, .. . ..
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' . .
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Cubic stacking ..,,‘..,, ..,,‘\..

th. amw. 7
L7

II | ]
=\ ) . S
AN .l‘b .lwp .'Qp
O RO R0

Hexagonal [001]
Cubic [111]

Hexagonal stacking

Figure 12: [110] view of faujasite 111 layers.

STRUCTURAL

{a, b, ¢, gammal} 17.437 17.437 14.238 120.0
{Expected diffraction point symmetry} 6/mmm
{Number of layers = } 2

LAYER 1

centrosymmetric

Si4+ 1 0.15373 -0.01354 -0.14201 1.0 1.0
Si4+ 0.33274 -0.01354 -0.14201 1.0 1.0
Si4+ 3 0.15373 0.16726 -0.14201 1.0 1.0
Si4+ 4 0.51354 0.16726 -0.14201 1.0 1.0
Si4+ 5 0.33274 0.34627 -0.14201 1.0 1.0
Si4+ 6 0.51354 0.34627 -0.14201 1.0 1.0
Si4+ 7 0.09514 -0.13074 0.03379 1.0 1.0
Si4+ 8 0.27413 -0.13074 0.03379 1.0 1.0
Si4+ 9 0.09514 0.22587 0.03379 1.0 1.0
Si4+ 10 0.63074 0.22587 0.03379 1.0 1.0
Si4+ 11 0.27413 0.40486 0.03379 1.0 1.0
Si4+ 12 0.63074 0.40486 0.03379 1.0 1.0
Si4+ 13 0.03487 -0.07047 0.21460 1.0 1.0
Si4+ 14 0.39468 -0.07047 0.21460 1.0 1.0
Si4+ 15 0.03487 0.10532 0.21460 1.0 1.0
Si4+ 16 0.57047 0.10532 0.21460 1.0 1.0
Si4+ 17 0.39468 0.46513 0.21460 1.0 1.0
Si4+ 18 0.57047 0.46513 0.21460 1.0 1.0
Si4+ 19 0.15421 -0.01080 0.39358 1.0 1.0
Si4+ 20 0.33501 -0.01080 0.39358 1.0 1.0
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0 1- 38 0.42794 -0.14414 -0.21619 1.0 0.5
0 1- 39 -0.07206 0.07206 -0.21619 1.0 0.5
0 1- 40 0.64414 0.07206 -0.21619 1.0 0.5
0 1- 41 0.42794 0.57206 -0.21619 1.0 0.5
0 1- 42 0.64414 0.57206 -0.21619 1.0 0.5
0 1- 43 0.06667 -0.07927 -0.32500 1.0 0.5
0 1- 44 0.35408 -0.07927 -0.32500 1.0 0.5
0 1- 45 0.06667 0.14592 -0.32500 1.0 0.5
0 1- 46 0.57927 0.14592 -0.32500 1.0 0.5
0 1- 47 0.35408 0.43333 -0.32500 1.0 0.5
0 1- 48 0.57927 0.43333 -0.32500 1.0 0.5
0 1- 49 0.23720 -0.02561 -0.35998 1.0 1.0
0 1- 50 0.52561 0.26279 -0.35998 1.0 1.0
0 1- 51 0.23721 0.26280 -0.35998 1.0 1.0
0 1- 52 0.40313 0.09686 -0.38212 1.0 1.0
0 1- 53 0.19373 0.09687 -0.38212 1.0 1.0
0 1- 54 0.40314 0.30627 -0.38212 1.0 1.0
0 1- 55 0.11714 -0.04954 -0.50000 1.0 0.5
0 1- 56 0.33333 -0.04954 -0.50000 1.0 0.5
0 1- 57 0.11714 0.16667 -0.50000 1.0 0.5
0 1- 58 0.54954 0.16667 -0.50000 1.0 0.5
0 1- 59 0.33333 0.38286 -0.50000 1.0 0.5
0 1- 60 0.54954 0.38286 -0.50000 1.0 0.5
STACKING

recursive

3

TRANSITIONS

{1}

0.99 0.666666667 0.333333333 1.0
0.01 0.0 0.0 1.0
{2}

0.01 0.0 0.0 1.0
0.99 -0.666666667 -0.333333333 1.0

A.4 Data file describing chiral twinning in zeolite beta.

Zeolite beta, like faujasite, has a 3 dimensional pore system with the minimum constricting
apertures being 12-rings. However, the (tertiary) building units stack in either a right-
handed, 4;, or left-handed, 43, manner. Zeolite beta exhibits near-random faulting proba-
bility, with a 40-50% chance that the next layer will continue in the same handedness as
the previous two layers. Due to the near-random nature of the stacking, there is no rea-
son to believe that the as-synthesized zeolite exhibits any significant residual chirality. The
zeolite beta structure can be described by a minimum of four layers. However, with four
layers, the two end-members, represented by the extreme stacking transition probabilities of
0 and 1, will be either the right-handed or the left-handed enantiomer. Only at a stacking
probability of 0.5 will the crystal be racemic. In general, the data will describe a material
which exhibits a preferred handedness, which contains faults which immediately attempt to
repair the error by following quickly with a second fault which brings the sequence back into

the preferred handedness. These are generally known as deformation faults. To describe a
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structure that (as a statistical ensemble of crystallites at least) is always racemic, we need to
define 8 layers; 4 right-handed layers, and 4 left-handed layers. Under these circumstances,
once the fault has happened, the sequence continues in this new handedness until another
fault is encountered. The fault probability is now the chance that the stacking will reverse
handedness. Thus one end-member, ‘fault’ probability 0, represents the chiral crystal system
(i.e. an equal mixture of right-handed and left-handed crystallites). The other end-member
represents the achiral crystal system, where stacking is a strictly alternating LRLRLR...,
which is a c-glide operation. By increasing the number of layers we have introduced the
ability to add a ‘memory’ to the layer description, that they remember the stacking sense
of the previous layer (Reichweite = 1). The range of this ‘memory’ can be increased by

increasing the number of layers.

[010] view of a faulted zeolite beta crystallite

B aaa o —"
600 —
6 -

. L O L0 LN c/4 - a/3
—:9:0:0:9: [1H
c c/4+b/3
- /&—/ -
(Y Y ( c/4+a/3

B 410 0

e e
R SR RS

Figure 13: [010] view of a faulted zeolite beta framework.
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Stacking of building units in zeolite beta

RH stacking

LH stacking

Figure 14: Stacking of building units in zeolite beta.

Data file beta.dat

{ DATA FOR ZEQOLITE BETA }
{ chiral stacking probability = 0.440 }

{This data file was created by clipping a 16 T-atom ‘helicopter’}

{unit from the chiral P4122 structure. Layers 1 to 4 were }

{generated by rotating this unit successively by +90 degrees.}

{The left-hand layers, 5 to 8, were generated by taking layer 1}

{and reflecting it in the vertical glide plane at x = y,}

{essentially by swapping the x and y atom coordinates. This operation,}
{applied to layer 1, generates layer 8. Successive -90 degree}
{rotations of layer 8 generate layers 7, 6 and 5 respectively}

{Sequences of the type 1,2,3,4,1,2,3,4,1,2,3,4,1. . . are pure}
{right-handed P4122 structures, and 5,8,7,6,5,8,7,6,5,8,. . . are}
{pure left-handed P4322 forms. Sequences such as 1,8,1,8,1. . ,}
{2,5,2,5,2,. . ., 3,6,3,6,3,. . ., and 4,5,4,5,4,. . . are the}

{monoclinic C2/c forms.}
{This description does not allow for any subtle strains in the}
{basic helicopter unit that can arise as a function of stacking}

{probability}

INSTRUMENTAL

X-RAY {radiation type}

1.5418 {radiation wavelength}
PSEUDO-VOIGT .89 -.32 .08 .6 trim {pseudo-Voigt instr. broadening}
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STRUCTURAL

12.423 12.423 26.307 90.000 {cell a, b, ¢ and gamma in Angstroms}
4 /mmm {symmetry, averaged over the faults}
8 {number of layer types}
infinite

LAYER 1 {basic ‘helicopter’ unit from bea, Newsam et al, Proc Roy Soc}
NONE {no special symmetry such as centrosymmetric}
Si4+ 1 -0.0040 -0.1310 -0.0690 1.0 1.0
Si4+ 2 0.1260 -0.0010 0.0690 1.0 1.0
Si4+ 3 -0.0040 0.1220 -0.0690 1.0 1.0
Si4+ 4 -0.1260 -0.0010 0.0690 1.0 1.0
Si4+ 5 -0.3830 -0.1310 -0.0660 1.0 1.0
Si4+ 6 0.1260 0.3790 0.0660 1.0 1.0
Si4+ 7 -0.3830 0.1210 -0.0660 1.0 1.0
Si4+ 8 -0.1260 0.3790 0.0660 1.0 1.0
Si4+ 9 0.3790 -0.1310 -0.0690 1.0 1.0
Si4+ 10 0.1270 -0.3840 0.0690 1.0 1.0
Si4+ 11 0.3790 0.1220 -0.0690 1.0 1.0
Si4+ 12 -0.1260 -0.3840 0.0690 1.0 1.0
Si4+ 13 -0.1950 -0.1950 0.0000 1.0 1.0
Si4+ 14 0.1900 0.1910 0.0000 1.0 1.0
Si4+ 15 -0.1950 0.1910 0.0000 1.0 1.0
Si4+ 16 0.1900 -0.1950 0.0000 1.0 1.0
01- 1 -0.0030 -0.0040 -0.0600 1.0 1.0
01- 2 0.0000 -0.0010 0.0600 1.0 1.0
01- 3 0.1510 0.3280 0.1210 1.0 0.5
01- 4 -0.0010 -0.1550 -0.1290 1.0 0.5
01- 5 0.1510 -0.0030 0.1290 1.0 0.5
0 1- 6 -0.3320 -0.1550 -0.1210 1.0 0.5
01- 7 0.0990 -0.1820 -0.0420 1.0 1.0
01- 8 0.1780 -0.1030 0.0420 1.0 1.0
01- 9 -0.1090 -0.1800 -0.0440 1.0 1.0
0 1- 10 0.1760 0.1050 0.0440 1.0 1.0
0 1- 11 -0.1510 0.3280 0.1210 1.0 0.5
0 1- 12 -0.0010 0.1460 -0.1290 1.0 0.5
0 1- 13 -0.1510 -0.0030 0.1290 1.0 0.5
0 1- 14 -0.3320 0.1460 -0.1210 1.0 0.5
0 1- 15 0.0990 0.1740 -0.0420 1.0 1.0
0 1- 16 -0.1780 -0.1030 0.0420 1.0 1.0
0 1- 17 -0.1100 0.1720 -0.0440 1.0 1.0
0 1- 18 -0.1760 0.1050 0.0450 1.0 1.0
0 1- 19 -0.3850 -0.0050 -0.0570 1.0 1.0
0 1- 20 0.0000 0.3810 0.0570 1.0 1.0
0 1- 21 -0.5000 -0.1770 -0.0640 1.0 0.5
0 1- 22 0.1720 0.5000 0.0640 1.0 0.5
0 1- 23 -0.3130 -0.1860 -0.0230 1.0 1.0
0 1- 24 0.1820 0.3080 0.0230 1.0 1.0
0 1- 25 -0.5000 0.1670 -0.0640 1.0 0.5
0 1- 26 -0.1720 0.5000 0.0640 1.0 0.5
0 1- 27 -0.3130 0.1770 -0.0220 1.0 1.0
0 1- 28 -0.1810 0.3090 0.0230 1.0 1.0
0 1- 29 0.3800 -0.0050 -0.0620 1.0 1.0
0 1- 30 0.0000 -0.3960 0.0620 1.0 1.0
0 1- 31 0.3050 -0.1850 -0.0270 1.0 1.0
0 1- 32 0.1800 -0.3090 0.0270 1.0 1.0
0 1- 33 0.3050 0.1750 -0.0270 1.0 1.0
0 1- 34 -0.1800 -0.3090 0.0270 1.0 1.0
0 1- 35 0.1550 -0.3380 0.1250 1.0 0.5
0 1- 36 0.3330 -0.1590 -0.1250 1.0 0.5
0 1- 37 -0.1540 -0.3380 0.1250 1.0 0.5
0 1- 38 0.3330 0.1500 -0.1250 1.0 0.5
0 1- 39 -0.1720 -0.5000 0.0640 1.0 0.5
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40 0.1720 -0.5000 0.0640 1.0 0.5
41 0.5000 -0.1770 -0.0640 1.0 0.5
42 0.5000 0.1670 -0.0640 1.0 0.5
2 {same as layer 1 rotated by +90 degrees about c}

{no special symmetry such as centrosymmetric}
0.1310 -0.0040 -0.0690 1.0
0.0010 0.1260 0.0690
-0.1220 -0.0040 -0.0690
0.0010 -0.1260 0.0690
.1310 -0.3830 -0.0660
-0.3790 0.1260 0.0660
-0.1210 -0.3830 -0.0660
-0.3790 -0.1260 0.0660
0.1310 0.3790 -0.0690
10 0.3840 0.1270 0.0690
11 -0.1220 0.3790 -0.0690
12 0.3840 -0.1260 0.0690
13 0.1950 -0.1950 0.0000
14 -0.1910 0.1900 0.0000
15 -0.1910 -0.1950 0.0000
.1950 0.1900 0.0000

0
0
0
0

O©COONOO P WN -
o

0

0.0040 -0.0030 .0600
0.0010 0.0000 .0600
0.3280 0.1510 .1210
0.1550 -0.0010 -0.1290
0.0030 0.1510 0.1290
0.1550 -0.3320 -0.1210
0.1820 0.0990 -0.0420
0.1030 0.1780 0.0420
0.1800 -0.1090 -0.0440
10 -0.1050 0.1760 0.0440
11 -0.3280 -0.1510 0.1210
12 -0.1460 -0.0010 -0.1290
13 0.0030 -0.1510 0.1290
14 -0.1460 -0.3320 -0.1210
15 -0.1740 0.0990 -0.0420
16 0.1030 -0.1780 0.0420
17 -0.1720 -0.1100 -0.0440
18 -0.1050 -0.1760 0.0450
19 0.0050 -0.3850 -0.0570
20 -0.3810 0.0000 0.0570
21 0.1770 -0.5000 -0.0640
22 -0.5000 0.1720 0.0640
23 0.1860 -0.3130 -0.0230
24 -0.3080 0.1820 0.0230
25 -0.1670 -0.5000 -0.0640
26 -0.5000 -0.1720 0.0640
27 -0.1770 -0.3130 -0.0220
28 -0.3090 -0.1810 0.0230

RP R R RRPPRPRPPRRRRERRRRPRRPRPRPPRRPRRERRRRRPRRPRPPPEPRPRRERRERRERRRRPRRPPPRPRERRERRRRERRRERRPRRPRRPERRERRRRRERE
QOO0 O0OO0OO0OO0OFRrFH,FPFPPPLPPLPPLPOORPRPOORPFPPPPPLPOOOORRPRPPOOOORR,RERPEPREPEPRERREPREPREPREPREPRPEPPRP,EPERERERE
[N NOGEONONEONOGNONeoNeoNoNoNoloNoNoNO N NoNoN N NoNoNoNoNoNoNo N NN NoNoNoNoNO RO NN O NeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoN o)

leNoNoNoNoNoNoNoNoRNoNoNoNoNoNoNoNoNoNoNoNoNoRoNoRoloNoNoNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoN o)

29 0.0050 0.3800 -0.0620
30 0.3960 0.0000 0.0620
31 0.1850 0.3050 -0.0270
32 0.3090 0.1800 0.0270
33 -0.1750 0.3050 -0.0270
34 0.3090 -0.1800 0.0270
35 0.3380 0.1550 0.1250
36 0.1590 0.3330 -0.1250
37 0.3380 -0.1540 0.1250
38 -0.1500 0.3330 -0.1250
39 0.5000 -0.1720 0.0640
40 0.5000 0.1720 0.0640
41 0.1770 0.5000 -0.0640
42 -0.1670 0.5000 -0.0640
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LAYER 3 {same as layer 2 rotated by +90 degrees about c}
NONE {no special symmetry such as centrosymmetric}

Sid+ 1 0.0040 0.1310 -0.0690 1.0 1.0
Si4+ 2 -0.1260 0.0010 0.0690 1.0 1.0
Si4+ 3 0.0040 -0.1220 -0.0690 1.0 1.0
Si4+ 4 0.1260 0.0010 0.0690 1.0 1.0
Si4+ 5 0.3830 0.1310 -0.0660 1.0 1.0
Si4+ 6 -0.1260 -0.3790 0.0660 1.0 1.0
Si4+ 7 0.3830 -0.1210 -0.0660 1.0 1.0
Si4+ 8 0.1260 -0.3790 0.0660 1.0 1.0
Si4+ 9 -0.3790 0.1310 -0.0690 1.0 1.0
Si4+ 10 -0.1270 0.3840 0.0690 1.0 1.0
Si4+ 11 -0.3790 -0.1220 -0.0690 1.0 1.0
Si4+ 12 0.1260 0.3840 0.0690 1.0 1.0
Si4+ 13 0.1950 0.1950 0.0000 1.0 1.0
Si4+ 14 -0.1900 -0.1910 0.0000 1.0 1.0
Si4+ 15 0.1950 -0.1910 0.0000 1.0 1.0
Si4+ 16 -0.1900 0.1950 0.0000 1.0 1.0
01- 1 0.0030 0.0040 -0.0600 1.0 1.0
01- 2 0.0000 0.0010 0.0600 1.0 1.0
01- 3 -0.1510 -0.3280 0.1210 1.0 0.5
01- 4 0.0010 0.1550 -0.1290 1.0 0.5
01- 5 -0.1510 0.0030 0.1290 1.0 0.5
01- 6 0.3320 0.1550 -0.1210 1.0 0.5
01- 7 -0.0990 0.1820 -0.0420 1.0 1.0
01- 8 -0.1780 0.1030 0.0420 1.0 1.0
01- 9 0.1090 0.1800 -0.0440 1.0 1.0
01- 10 -0.1760 -0.1050 0.0440 1.0 1.0
0 1- 11 0.1510 -0.3280 0.1210 1.0 0.5
01- 12 0.0010 -0.1460 -0.1290 1.0 0.5
0 1- 13 0.1510 0.0030 0.1290 1.0 0.5
01- 14 0.3320 -0.1460 -0.1210 1.0 0.5
0 1- 15 -0.0990 -0.1740 -0.0420 1.0 1.0
01- 16 0.1780 0.1030 0.0420 1.0 1.0
0 1- 17 0.1100 -0.1720 -0.0440 1.0 1.0
01- 18 0.1760 -0.1050 0.0450 1.0 1.0
0 1- 19 0.3850 0.0050 -0.0570 1.0 1.0
01- 20 0.0000 -0.3810 0.0570 1.0 1.0
0 1- 21 0.5000 0.1770 -0.0640 1.0 0.5
01- 22 -0.1720 -0.5000 0.0640 1.0 0.5
0 1- 23 0.3130 0.1860 -0.0230 1.0 1.0
01- 24 -0.1820 -0.3080 0.0230 1.0 1.0
0 1- 25 0.5000 -0.1670 -0.0640 1.0 0.5
01- 26 0.1720 -0.5000 0.0640 1.0 0.5
0 1- 27 0.3130 -0.1770 -0.0220 1.0 1.0
01- 28 0.1810 -0.3090 0.0230 1.0 1.0
0 1- 29 -0.3800 0.0050 -0.0620 1.0 1.0
01- 30 0.0000 0.3960 0.0620 1.0 1.0
0 1- 31 -0.3050 0.1850 -0.0270 1.0 1.0
01- 32 -0.1800 0.3090 0.0270 1.0 1.0
0 1- 33 -0.3050 -0.1750 -0.0270 1.0 1.0
01- 34 0.1800 0.3090 0.0270 1.0 1.0
0 1- 35 -0.1550 0.3380 0.1250 1.0 0.5
0 1- 36 -0.3330 0.1590 -0.1250 1.0 0.5
0 1- 37 0.1540 0.3380 0.1250 1.0 0.5
0 1- 38 -0.3330 -0.1500 -0.1250 1.0 0.5
01- 39 0.1720 0.5000 0.0640 1.0 0.5
0 1- 40 -0.1720 0.5000 0.0640 1.0 0.5
0 1- 41 -0.5000 0.1770 -0.0640 1.0 0.5
0 1- 42 -0.5000 -0.1670 -0.0640 1.0 0.5

LAYER 4 {same as layer 3 rotated by +90 degrees about c}
NONE {no special symmetry such as centrosymmetric}
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Si4+ 1 -0.1310 0.0040 -0.0690 1.0 1.0
Si4+ 2 -0.0010 -0.1260 0.0690 1.0 1.0
Si4+ 3 0.1220 0.0040 -0.0690 1.0 1.0
Si4+ 4 -0.0010 0.1260 0.0690 1.0 1.0
Si4+ 5 -0.1310 0.3830 -0.0660 1.0 1.0
Si4+ 6 0.3790 -0.1260 0.0660 1.0 1.0
Si4+ 7 0.1210 0.3830 -0.0660 1.0 1.0
Si4+ 8 0.3790 0.1260 0.0660 1.0 1.0
Si4+ 9 -0.1310 -0.3790 -0.0690 1.0 1.0
Si4+ 10 -0.3840 -0.1270 0.0690 1.0 1.0
Si4+ 11 0.1220 -0.3790 -0.0690 1.0 1.0
Si4+ 12 -0.3840 0.1260 0.0690 1.0 1.0
Si4+ 13 -0.1950 0.1950 0.0000 1.0 1.0
Si4+ 14 0.1910 -0.1900 0.0000 1.0 1.0
Si4+ 15 0.1910 0.1950 0.0000 1.0 1.0
Si4+ 16 -0.1950 -0.1900 0.0000 1.0 1.0
01- 1 -0.0040 0.0030 -0.0600 1.0 1.0
01- 2 -0.0010 0.0000 0.0600 1.0 1.0
01- 3 0.3280 -0.1510 0.1210 1.0 0.5
01- 4 -0.1550 0.0010 -0.1290 1.0 0.5
01- &5 -0.0030 -0.1510 0.1290 1.0 0.5
01- 6 -0.1550 0.3320 -0.1210 1.0 0.5
01- 7 -0.1820 -0.0990 -0.0420 1.0 1.0
01- 8 -0.1030 -0.1780 0.0420 1.0 1.0
01- 9 -0.1800 0.1090 -0.0440 1.0 1.0
01- 10 0.1050 -0.1760 0.0440 1.0 1.0
01- 11 0.3280 0.1510 0.1210 1.0 0.5
0 1- 12 0.1460 0.0010 -0.1290 1.0 0.5
01- 13 -0.0030 0.1510 0.1290 1.0 0.5
0 1- 14 0.1460 0.3320 -0.1210 1.0 0.5
01- 15 0.1740 -0.0990 -0.0420 1.0 1.0
0 1- 16 -0.1030 0.1780 0.0420 1.0 1.0
01- 17 0.1720 0.1100 -0.0440 1.0 1.0
0 1- 18 0.1050 0.1760 0.0450 1.0 1.0
01- 19 -0.0050 0.3850 -0.0570 1.0 1.0
0 1- 20 0.3810 0.0000 0.0570 1.0 1.0
01- 21 -0.1770 0.5000 -0.0640 1.0 0.5
0 1- 22 0.5000 -0.1720 0.0640 1.0 0.5
01- 23 -0.1860 0.3130 -0.0230 1.0 1.0
0 1- 24 0.3080 -0.1820 0.0230 1.0 1.0
01- 25 0.1670 0.5000 -0.0640 1.0 0.5
0 1- 26 0.5000 0.1720 0.0640 1.0 0.5
01- 27 0.1770 0.3130 -0.0220 1.0 1.0
0 1- 28 0.3090 0.1810 0.0230 1.0 1.0
01- 29 -0.0050 -0.3800 -0.0620 1.0 1.0
0 1- 30 -0.3960 0.0000 0.0620 1.0 1.0
0 1- 31 -0.1850 -0.3050 -0.0270 1.0 1.0
0 1- 32 -0.3090 -0.1800 0.0270 1.0 1.0
01- 33 0.1750 -0.3050 -0.0270 1.0 1.0
0 1- 34 -0.3090 0.1800 0.0270 1.0 1.0
0 1- 35 -0.3380 -0.1550 0.1250 1.0 0.5
0 1- 36 -0.1590 -0.3330 -0.1250 1.0 0.5
01- 37 -0.3380 0.1540 0.1250 1.0 0.5
0 1- 38 0.1500 -0.3330 -0.1250 1.0 0.5
01- 39 -0.5000 0.1720 0.0640 1.0 0.5
0 1- 40 -0.5000 -0.1720 0.0640 1.0 0.5
0 1- 41 -0.1770 -0.5000 -0.0640 1.0 0.5
0 1- 42 0.1670 -0.5000 -0.0640 1.0 0.5

{The following four sheets are the left handed versions of the first four}
{They are related to the first four by a c-glide operation}

LAYER 5 {layer 2 mirrored across a-c and b-c planes}

NONE {no special symmetry such as centrosymmetric}

Si4+ 1 -0.0040 0.1310 -0.0690 1.0 1.0
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Si4+ 2 0.1260 0.0010 0.0690 1.0 1.0
Si4+ 3 -0.0040 -0.1220 -0.0690 1.0 1.0
Si4+ 4 -0.1260 0.0010 0.0690 1.0 1.0
Si4+ 5 -0.3830 0.1310 -0.0660 1.0 1.0
Si4+ 6 0.1260 -0.3790 0.0660 1.0 1.0
Si4+ 7 -0.3830 -0.1210 -0.0660 1.0 1.0
Si4+ 8 -0.1260 -0.3790 0.0660 1.0 1.0
Si4+ 9 0.3790 0.1310 -0.0690 1.0 1.0
Si4+ 10 0.1270 0.3840 0.0690 1.0 1.0
Si4+ 11 0.3790 -0.1220 -0.0690 1.0 1.0
Si4+ 12 -0.1260 0.3840 0.0690 1.0 1.0
Si4+ 13 -0.1950 0.1950 0.0000 1.0 1.0
Si4+ 14 0.1900 -0.1910 0.0000 1.0 1.0
Si4+ 15 -0.1950 -0.1910 0.0000 1.0 1.0
Si4+ 16 0.1900 0.1950 0.0000 1.0 1.0
01- 1 -0.0030 0.0040 -0.0600 1.0 1.0
01- 2 0.0000 0.0010 0.0600 1.0 1.0
01- 3 0.1510 -0.3280 0.1210 1.0 0.5
01- 4 -0.0010 0.1550 -0.1290 1.0 0.5
01- 5 0.15610 0.0030 0.1290 1.0 0.5
0 1- 6 -0.3320 0.1550 -0.1210 1.0 0.5
01- 7 0.0990 0.1820 -0.0420 1.0 1.0
01- 8 0.1780 0.1030 0.0420 1.0 1.0
01- 9 -0.1090 0.1800 -0.0440 1.0 1.0
0 1- 10 0.1760 -0.1050 0.0440 1.0 1.0
0 1- 11 -0.1510 -0.3280 0.1210 1.0 0.5
0 1- 12 -0.0010 -0.1460 -0.1290 1.0 0.5
0 1- 13 -0.1510 0.0030 0.1290 1.0 0.5
0 1- 14 -0.3320 -0.1460 -0.1210 1.0 0.5
0 1- 15 0.0990 -0.1740 -0.0420 1.0 1.0
0 1- 16 -0.1780 0.1030 0.0420 1.0 1.0
0 1- 17 -0.1100 -0.1720 -0.0440 1.0 1.0
0 1- 18 -0.1760 -0.1050 0.0450 1.0 1.0
0 1- 19 -0.3850 0.0050 -0.0570 1.0 1.0
0 1- 20 0.0000 -0.3810 0.0570 1.0 1.0
0 1- 21 -0.5000 0.1770 -0.0640 1.0 0.5
0 1- 22 0.1720 -0.5000 0.0640 1.0 0.5
0 1- 23 -0.3130 0.1860 -0.0230 1.0 1.0
0 1- 24 0.1820 -0.3080 0.0230 1.0 1.0
0 1- 25 -0.5000 -0.1670 -0.0640 1.0 0.5
0 1- 26 -0.1720 -0.5000 0.0640 1.0 0.5
0 1- 27 -0.3130 -0.1770 -0.0220 1.0 1.0
0 1- 28 -0.1810 -0.3090 0.0230 1.0 1.0
0 1- 29 0.3800 0.0050 -0.0620 1.0 1.0
0 1- 30 0.0000 0.3960 0.0620 1.0 1.0
0 1- 31 0.3050 0.1850 -0.0270 1.0 1.0
0 1- 32 0.1800 0.3090 0.0270 1.0 1.0
0 1- 33 0.3050 -0.1750 -0.0270 1.0 1.0
0 1- 34 -0.1800 0.3090 0.0270 1.0 1.0
0 1- 35 0.1550 0.3380 0.1250 1.0 0.5
0 1- 36 0.3330 0.1590 -0.1250 1.0 0.5
0 1- 37 -0.1540 0.3380 0.1250 1.0 0.5
0 1- 38 0.3330 -0.1500 -0.1250 1.0 0.5
0 1- 39 -0.1720 0.5000 0.0640 1.0 0.5
0 1- 40 0.1720 0.5000 0.0640 1.0 0.5
0 1- 41 0.5000 0.1770 -0.0640 1.0 0.5
0 1- 42 0.5000 -0.1670 -0.0640 1.0 0.5
LAYER 6 {layer 3 mirrored across a-c and b-c planes}
NONE {no special symmetry such as centrosymmetric}
Si4+ 1 -0.1310 -0.0040 -0.0690 1.0 1.0
Si4+ 2 -0.0010 0.1260 0.0690 1.0 1.0
Si4+ 3 0.1220 -0.0040 -0.0690 1.0 1.0
Si4+ 4 -0.0010 -0.1260 0.0690 1.0 1.0
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Sid+ 5
Sid+ 6
Sid+ 7
Sid+ 8
Sid+ 9
Si4+ 10
Sid+ 11
Sid+ 12
Sid+ 13
Sid+ 14
Sid4+ 15
Sid+ 16
0 1- 1
0 1- 2
0 1- 3
0 1- 4
0 1- 5
0 1- 6
0 1- 7
0 1- 8
0 1- 9
0 1- 10
0 1- 11
01- 12
0 1- 13
01- 14
0 1- 15
0 1- 16
0 1- 17
0 1- 18
0 1- 19
0 1- 20
01- 21
01- 22
0 1- 23
01- 24
0 1- 25
0 1- 26
0 1- 27
0 1- 28
01- 29
0 1- 30
0 1- 31
0 1- 32
0 1- 33
0 1- 34
0 1- 35
0 1- 36
0 1- 37
0 1- 38
0 1- 39
0 1- 40
0 1- 41
0 1- 42
LAYER
NONE
Sid+ 1
Sid+ 2
Sid+ 3
Sid+ 4
Sid+ 5
Sid+ 6
Sid+ 7

.1310
.3790
.1210
.3790
.1310
.3840
.1220
.3840
.1950
.1910
.1910
.1950
.0040
.0010
.3280
.1550
.0030
.1550
.1820
.1030
.1800
.1050
.3280
.1460
.0030
.1460
.1740
.1030
.1720
.1050
.0050
.3810
L1770
.5000
.1860
.3080
.1670
.5000
L1770
.3090
.0050
.3960
.1850
.3090
.1750
.3090
.3380
.1590
.3380
.1500
.5000
.5000
L1770
.1670

[eNeoNoNoNoNoNoNoNoNoNoNoNoNe)

.3830
.1260
.3830
.1260
.3790
.1270
.3790
.1260
.1950
.1900
.1950
.1900
.0030
.0000
.1510
.0010
.1510
.3320
.0990
.1780
.1090
.1760
.1510
.0010
.1510
.3320
.0990
.1780
.1100
.1760
.3850
.0000
.5000
.1720
.3130
.1820
.5000
.1720
.3130
.1810
.3800
.0000
.3050
.1800
.3050
.1800
.1550
.3330
.1540
.3330
.1720
.1720
.5000
.5000

.0660
.0660
.0660
.0660
.0690
.0690
.0690
.0690
.0000
.0000
.0000
.0000
.0600
.0600
.1210
.1290

0.1290

.1210
.0420
.0420
.0440
.0440
.1210
.1290
.1290
.1210
.0420
.0420
.0440
.0450
.0570
.0570
.0640
.0640
.0230
.0230
.0640
.0640
.0220
.0230
.0620
.0620
.0270
.0270
.0270
.0270
.1250
.1250
.1250
.1250
.0640
.0640
.0640
.0640

PR RRRPRRRRRPRRPRRRPBPRERRERRPBPRERERPBPREBRERRPBRRERRRPBRRRERRPBPRERERRPBREBRRRRERRRRBRR B 3 &

[eNoNoNoNoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNoRoNoNe)

QOO0 O0OO0OO0COR,rRP,PRPRPRPPRPLPPRPLPOORPRPRPROORPRRPPPPPLPOOOORRRPPRPPOOOORRPEPRPEPEPREPREPREPREPRPRPRPREERE

[EOEOEG RO NG NG NG ReoloNoNoNoNoNoNoNa N NeoNold N N oNoRoNoNoNoNo N NO N NeoNoNeoRo N O N N NeoNoNoNoNoNoNoNoNoNoNoRo N o Ne)

{layer 4 mirrored across a-c
{no special symmetry such as

.0040
.1260
.0040
.1260
.3830
.1260
.3830

-0.
0.
-0.
-0.
0.
0.

0.1310

0010
1220
0010
1310
3790
1210

0
-0.
0
-0.
0
-0.

0.0690
.0690

0690

.0690

0660

.0660

0660

s e =
[eNoNoNoNoNoNe)

e s e =
[oNoNoNoNoNoNe)

and b-c planes}
centrosymmetric}
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Sid+ 8 0.
Sid+ 9 -0
Si4+ 10 -0
Sid+ 11 -0
Sid+ 12 0
Sid+ 13 0
Si4+ 14 -0
Sid+ 15 O
Sid4+ 16 -0
0 1- 1 0
0 1- 2 0
0 1- 3 -0
0 1- 4 0
0 1- 5 -0
0 1- 6 0
0 1- 7 -0
0 1- 8 -0
0 1- 9 0
0 1- 10 -0.
01- 11 O©
01- 12 0
01- 13 ©
01- 14 0
0 1- 15 -0
01- 16 0
01- 17 O
01- 18 0
01- 19 O©
01- 20 O
01- 21 O
01- 22 -0
01- 23 0
01- 24 -0
01- 25 O
01- 26 O
01- 27 O
01- 28 0
01- 29 -0
01- 30 O
0 1- 31 -0
0 1- 32 -0
0 1- 33 -0
01- 34 0
0 1- 35 -0
0 1- 36 -0
01- 37 O
0 1- 38 -0
01- 39 0
0 1- 40 -0
0 1- 41 -0
0 1- 42 -0
LAYER 8
NONE

Sid+ 1 0
Sid+ 2 0
Sid+ 3 -0
Sid+ 4 0
Sid+ 5 0
Sid+ 6 -0
Sid+ 7 -0
Sid+ 8 -0
Sid+ 9 0
Si4+ 10 O

1260

.3790
.1270
.3790
.1260
.1950
.1900
.1950
.1900
.0030
.0000
.1510
.0010
.1510
.3320
.0990
.1780
.1090

1760

.1510
.0010
.1510
.3320
.0990
.1780
.1100
.1760
.3850
.0000
.5000
.1720
.3130
.1820
.5000
.1720
.3130
.1810
.3800
.0000
.3050
.1800
.3050
.1800
.1550
.3330
.1540
.3330
.1720
.1720
.5000
.5000

.3790
.1310
.3840
.1220
.3840
.1950
.1910
.1910
.1950
.0040
.0010
.3280
.1550
.0030
.1550
.1820
.1030
.1800
.1050
.3280
.1460
.0030
.1460
.1740
.1030
.1720
.1050
.0050
.3810
.1770
.5000
.1860
.3080
.1670
.5000
.1770
.3090
.0050
.3960
.1850
.3090
.1750
.3090
.3380
.1590
.3380
.1500
.5000
.5000
.1770
.1670

[eNoNoNoNoNoNoNoRNoNoNoNoNe)

.0660
.0690
.0690
.0690
.0690
.0000
.0000
.0000
.0000
.0600
.0600
.1210
.1290

0.1290

.1210
.0420
.0420
.0440
.0440
.1210
.1290
.1290
.1210
.0420
.0420
.0440
.0450
.0570
.0570
.0640
.0640
.0230
.0230
.0640
.0640
.0220
.0230
.0620
.0620
.0270
.0270
.0270
.0270
.1250
.1250
.1250
.1250
.0640
.0640
.0640
.0640

PR RRRRPRRRPBPRPRRERRPBPRERRRBRRERRRPBRRRERRPBPRRERRPRRPBRRBRERRERRRPBRERRERRBRERRERRSRBRRR&
[eNoloNoNoNoNoNoloRoNoNoNoNoloNoNoNoNoNoNooNoNoNoloNoNoNoNoNoNoloNoNoNoNoNoloNoNoNoNoNoNoNoNoNoNoNoNe]

QOO0 O0OO0OO0OOFRR,RRPRPRPLPRPLPRLPRPLPOORRFRLROORRFRPRPRPPPLPOOOORRPRPLPPFPOOOORRPRREPRPREPRERRLRERLRRERE

[ EGNGEOEOREONG NG NeoReoRoRoloNoNoNoNo N NoNeolo N NoRoNoNoNoNeoNo No No N NoNoNoNeoNO O RO N N ooNoNoNoNoNoNoNoNoNe]

{layer 1 mirrored across a-c
{no special symmetry such as
0.0040

.1310
.0010
.1220
.0010
.1310
.3790
.1210
.3790
.1310
.3840

.1260
.0040
.1260
.3830
.1260
.3830
.1260
.3790
.1270

0.0690
.0690
.0690
.0690
.0660
.0660
.0660
.0660
.0690
.0690

I N e e e = = S SISy
[oNoNoNoNoNoNoNoNoNe]

e e N e e N e = e =
oNoNoNoNoNoNoNoNoNe]

and b-c planes}
centrosymmetric}
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Si4+ 11 -0.1220 -0.3790 -0.0690
Si4+ 12 0.3840 0.1260 0.0690
Si4+ 13 0.1950 0.1950 0.0000
Si4+ 14 -0.1910 -0.1900 0.0000
Si4+ 15 -0.1910 0.1950 0.0000
Si4+ 16 .1950 -0.1900 0.0000
0 1- 1 .0040 0.0030 -0.0600

1- .0010 0.0000 0.0600

1- -0.3280 -0.1510 0.1210

1- 0.1290

.0030 -0.1510 0.1290
.15560 0.3320 -0.1210
.1820 -0.0990 -0.0420
.1030 -0.1780 0.0420
.1800 0.1090 -0.0440
1- 10 -0.1050 -0.1760 0.0440
1- 11 -0.3280 0.1510 0.1210
1- 12 -0.1460 0.0010 -0.1290
1- 13 0.0030 0.1510 0.1290
1- 14 -0.1460 0.3320 -0.1210
1- 15 -0.1740 -0.0990 -0.0420
1- 16 0.1030 0.1780 0.0420
1- 17 -0.1720 0.1100 -0.0440
1- 18 -0.1050 0.1760 0.0450
1- 19 0.0050 0.3850 -0.0570
1- 20 -0.3810 0.0000 0.0570
1- 21 0.1770 0.5000 -0.0640

0

0

0

0

0

0

0

0

0

0
0
0
0
0.1550 0.0010 -
0
0
0
0
0

1- 22 -0.5000 .1720 0.0640
.1860 .3130 -0.0230
1- 24 -0.3080 .1820 0.0230
1- 25 -0.1670 .5000 -0.0640
1- 26 -0.5000 .1720 0.0640
1- 27 -0.1770 .3130 -0.0220
1- 28 -0.3090 .1810 0.0230

PR RRPRPRPRRPRPRRPRRPRRRRRRRPRRPPPRPRERRERRRRRRPRRPRRPRPRERRERRRERRERRRRERRPRPEPRRPEPRRERRRRRRE
leNoNoNoNoNoNoloNoNoNoNoNoNoloNoNoNoNoloNoNoNoNoNoloNoNoNoNoNooNoNoNoNoloNoNoNoNoNoNoNoNoNoNoNe)
QOO O0OO0OO0OO0CO0OR,rRP,PRPRPLPRPPPLPPRPLROORPRPRPROORPRRPPPPPOOOORRPRPPROOOORLRPLREPREPRERELER
[N NOoEOGNOGEOROGNONeNeoNoNoNoNoNoNoNo N NeoNeoNe NV NoNoNoNoNoNeoNO N NN NoNoNoNoNg RO RO N NoNoNoNoNoNoNoNe)

OO0 O0OO0O0O0OO0O00O0oO0o 0000000000 oOoDOoODOoDOLDOLoDOoDOoDOoODOoDOLOOooOoo o
-
|
N
w
(@]

1- 29 0.0050 -0.3800 -0.0620

1- 30 0.3960 0.0000 0.0620

1- 31 0.1850 -0.3050 -0.0270

1- 32 0.3090 -0.1800 0.0270

1- 33 -0.1750 -0.3050 -0.0270

1- 34 0.3090 0.1800 0.0270

1- 35 0.3380 -0.1550 0.1250

1- 36 0.1590 -0.3330 -0.1250

1- 37 0.3380 0.1540 0.1250

1- 38 -0.1500 -0.3330 -0.1250

1- 39 0.5000 0.1720 0.0640

1- 40 0.5000 -0.1720 0.0640

1- 41 0.1770 -0.5000 -0.0640

1- 42 -0.1670 -0.5000 -0.0640
STACKING
recursive {use the recursion model}
infinite {for an infinitely thick crystal, no thickness broadening}
TRANSITIONS

{Right-handed layer 1}

0.000 0.000 0.000 0.25000 {layer i is never followed by another i}
0.440 0.000 -0.33333 0.25000 {prob of 0.44 that layer 2 follows layer 1}
0.000 0.000 0.000 0.25000

0.000 0.000 0.000 0.25000

0.000 0.000 0.000 0.25000

0.000 0.000 0.000 0.25000

0.000 0.000 0.000 0.25000

0.560 0.000 0.33333 0.25000 {prob = 0.56 that 1 stacks to LH layer}
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{Right-handed layer 2}

0.000 0.000 0.000
0.000 0.000 0.000
0.440 0.33333 0.000
0.000 0.000 0.000
0.560 -0.33333 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
{Right-handed layer 3}
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.440 0.000 0.33333
0.000 0.000 0.000
0.560 0.000 -0.33333
0.000 0.000 0.000
0.000 0.000 0.000
{Right-handed layer 4}
0.440 -0.33333 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.560 0.33333 0.000
0.000 0.000 0.000
{Left-handed layer 5}
0.000 0.000 0.000
0.560 0.000 -0.33333
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.440 0.000 0.33333
{Left-handed layer 6}
0.000 0.000 0.000
0.000 0.000 0.000
0.560 0.33333 0.000
0.000 0.000 0.000
0.440 -0.33333 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
{Left-handed layer 7}
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.560 0.000 0.33333
0.000 0.000 0.000
0.440 0.000 -0.33333
0.000 0.000 0.000
0.000 0.000 0.000
{Left-handed layer 8}
0.560 -0.33333 0.000
0.000 0.000 0.000

[eNeoNoNoNoNoNoNe] [eNeoNoNoNoNoNoNe] [eNoNoNoNoNoNoNe] [cNeoNoNoNoNoNoNe) [eNeoNoNoNoNoNoNe)

[eNeoNoNoNoNoNoNe]

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000
.25000
.25000
.25000
.25000
.25000
.25000

.25000
.25000

{RH}
{LH}

{RH}
{LH}

{RH}

{LH}

{RH}

{LH}

{RH}
{LH}

{RH}
{LH}

{RH}
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0.000 0.000 0.000 0.25000
0.000 0.000 0.000 0.25000
0.000 0.000 0.000 0.25000
0.000 0.000 0.000 0.25000
0.440 0.33333 0.000 0.25000 {LH}
0.000 0.000 0.000 0.25000

A.5 Data file describing GaAs/GaAlAs 001 superlattice, GaAs GaAlAs.dat.

The lattice of GaAs has the cubic diamond framework, with the Ga atoms on the (0,0,0)
positions and the As on the (1/4,1/4,1/4) positions. GaAlAs also uses the diamond frame-
work, but in this case the Ga and Al share the (0,0,0) sublattice, and the As occupies the
(1/4,1/4,1/4) sublattice. Thus, in a supperlattice structure, the As sublattice is continuous.
The superlattice can be described by three layer types; type 1 being pure Ga, type 2 pure As,
and type 3 being admixed Ga and As. Pure GaAs can be simulated by alternating Ga and
As layers. (Pure GaAs could also be described by one layer that is an amalgam of layer types
1 and 2.) In this example we simulate a finite superlattice by defining an explicit sequence
of layers, and we list the layer sequence in the data file. Note that GaAlAs has a slightly
larger unit cell dimension than GaAs. In the superlattice, however, the in-plane a and b cell
dimensions are the same, because of the tetragonal distortion induced by coherency strains.
However, the layer separation along c is not the same in the two materials. This difference is
accommodated in the data file by defining a common c cell dimension of 5.65 A, and making
the c-component of the stacking vector for the Al-rich layers to be slightly larger. The exact
amount is computed from the formula for the strain along z

_1—1—0
C1l-0

€0 (19)

€z

where the strain €y = (agaaias — @Gaas)/(GGarlas + GGans), With a being the cubic unit cell
dimensions for each composition, and ¢ being the isotropic Poisson ratio for the material.
All of the strain is absorbed in the GaAlAs layer because in this instance, we assume that the
superlattice is grown on bulk GaAs. Typically, 0 = 1/3, and ¢, = 0.0018, giving €, = 0.0036.
Since for GaAs, R, = 0.25, then for GaAlAs, R, = 0.25(1 4+ 0.0036) = 0.25009.

Data file GaAs_GaAlAs.dat

{data file for an explicit sequence of GaAs/GaAlAs layers}

{with 7 GaAs layers followed by 10 GaAlAs layers}

{In the GaAlAs, Al:Ga ratio is 3:7, with Ga and Al randomly distributed.}
{There are a total of 680 layers}

{The sequence 1 2 1 2 ... represents GaAs, and the sequence 2 3 2 3 ...}
{represents GaAlAs}

INSTRUMENTAL {Header for instrumental section}
X-RAY {Simulate X-ray diffraction}
1.5418 {X-ray wavelength}
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STRUCTURAL

5.65 5.65 5.65 90.
Axial

3

infinite

LAYER 1
NONE

Ga3+ 1
Ga3+ 2

[oNe)
o
o

LAYER 2
NONE

As 1
As 2

[oNe)
(6N e)

LAYER 3
NONE
Ga3+
Al13+
Ga3+
Al13+

NN ==
[oNoNoNe]
[N NeNe]
[oNeoNoNe]
[N NeNe]

STACKING
explicit
121212121

[eNe]
[ Ne]

Gaatomaty=0

Gaatomaty=1/2
Asatomaty=1/4
Asatomaty=3/4

GalAl atomaty=0
GalAl atomaty=1/2
Asatomaty=1/4
Asatomaty=3/4

Figure 15: [010] views of GaAs and GaAlAs crystals.

[oNeoNoNe]
O OOOo

21212

[eNe]

[ e S
[eNoNoNe]

[EY

[oNeoNoNe]

[eNe]

{No Instrumental braodening}

{Header for structural section}
{unit cell coordinates}

{We are only interested in the
{3 layers}

{(001) plane}

001 trace}

.0 {face centered atom}
{(001) plane}
{face centered atom}
{(001) plane, Ga and Al randomized}
7
.3
7 {face centered Ga3+ atom}
.3 {face centered Al3+atom}

{Explicitly defined superlattice}

32323232323232323232
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Figure 16: [010] view of GaAs/GaAlAs superlattice.

ANANAANANANANANANANANANANANANNANANN
NOMOOMOMOMMOHMNMMOMHOMHONHOHOMOOONONNN™N
AN
NMOMMOMMMMNHMOHOMOMHMHOMMNMHOMNHMNHMNONMNN
AN
MOMOMMMMMHMMHMMONOMOMOONNNN
AN
MDOMOMOMMMMNHMMOMHMMOHOMOONNNN
AN
MNOMOMOMMMMHMHMOMHMMHONHOMOONNNN
AN
NOMOMOMMMOHMMOMHMONHOONOMOOONMNN™N
aAaNAaNaAaAaNaaAaaNaAaaNaAaNaNdNaNdNaNdNdNANN
NOMOOMOMOMMHMNMMMNMOMHONHOHOMOHOONONMNN™N
AN
MMOMOMMMMMNHMMOMMMONOMOMOONNNN
AN
MMOMOMMMMMMMHMMOMNOMOMOONNNN
AN
MMOMOMMMMMNMMMOMHMMONHOMOOONNNN
AN
A B B e B B e B e B B B B e B e B B B B B e B |
AN AANANANANANANANAaNAaNaNNANNNANN
s v v v v v A A
AN
in e e e I e e e s I I B B |
AN
T A A A A A A A A A A A
AN
A A A A A A A A A A A A A A AAAA
aaaaAaaaaNaa NN aNdNdNNdN
A A A A A A A A A A
AN

A A A A A A A A A A A A A A

{Header for stacking transition data}

TRANSITIONS

{Transitions from layer 1}

0.0

{layer 1 to layer 1}

0.25 0.25

0.25
0.25
0.25

0.25 0.25 {layer 1 to layer 2, diamond glide}
{layer 1 to layer 3}

1.0
0.0

0.25 0.25

{Transitions from layer 2}
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.5 0.25
.0 0.25
5 0.25

-0.25
-0.25
-0.25

T

.0 0.25
.0 0.25
0 0.25

0.25
0.25
0.25

0.25
0.25
0.250

0.25
0.250
0.25

0
0
0
{Transitions from layer 3}
0
1
0

{layer
{layer
9 {layer
{layer
9 {layer

{layer

to
to
to

to
to
to

layer
layer
layer

layer
layer
layer

1, diamond glide}
23

3, GaAlAs is strained along c-axis}

1}
2, GaAlAs is strained along c-axis}

3}

B DIFFaX output using a control file.

B.1 The Control File

A control file which will run consecutively the 5 data files found in appendices A.1 to A.5 is

given below. The file must be called control.dif.

{Control file script to run the data given in appendices A.1 through A.5}
{Text in curly braces are comments. Matching braces must be on the same line.}
{This file contains the pre-composed responses to DIFFaX’s prompts.}

{When DIFFaX finds this file, control.dif, in the same directory, DIFFaX}
{reads this file for its data instead of prompting the user.}

{This allows the user to run long ‘‘batch’’ jobs unattended.}

dia.dat

1

1

1

3

0 170 .05
1

1
Clustdia.dat
0

0

3

0 170 .05
1

1

FAU.dat

0

0

3

0 25 .01
1

1
beta.dat
0

0

3

0 25 .01
1

1
GaAs_GaAlAs.dat
0

1

1

0 0 3.5 4.5 .001
0

end

{File

{File

{File

{File

{File

{Stop}

describing random faults in diamond}

{We want a data dump}

{We want a full atomic position dump}

{We want a dump of symmetry evaluations}

{We want a powder pattern}

{0 to 170 degrees, in steps of 0.05 degrees}

{Full adaptive quadrature on broad peaks}

{Full adaptive quadrature over all 1 on sharp rows}
describing clustered faults in diamond}

{We do not want a data dump}

{We do not want a dump of symmetry evaluations}

{We want a powder pattern}

{0 to 170 degrees, in steps of 0.05 degrees}

{Full adaptive quadrature on broad peaks}

{Full adaptive quadrature over all 1 on sharp rows}
describing random faults in faujasite}

{We do not want a data dump}

{We do not want a dump of symmetry evaluations}

{We want a powder pattern}

{0 to 25 degrees, in steps of 0.01 degrees}

{Full adaptive quadrature on broad peaks}

{Full adaptive quadrature over all 1 on sharp rows}

describing random faults, with ‘‘memory’’, in zeolite beta}

{We do not want a data dump}

{We do not want a dump of symmetry evaluations}

{We want a powder pattern}

{0 to 25 degrees, in steps of 0.01 degrees}

{Full adaptive quadrature on broad peaks}

{Full adaptive quadrature over all 1 on sharp rows}
describing an explicitly defined superlattice}

{No data dump. No symmetry dump - file specified ‘Axial’}
{We want a line trace, or streak}

{Full adaptive quadrature on broad peaks}
{h, k, 10, 11, delta_l}

{Do not return to the function menu}
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B.2 Output from the Control File
The output from DIFFaX, using the above control file, is listed below. The values read from
the control file are indented.

3k 3k 3k 3k ok >k 3k Sk ok sk >k >k >k 3k Sk ok >k >k >k Sk Sk ok ok >k 3k Sk ok sk >k 3k 3k Sk ok ok >k >k Sk 5k sk ok >k >k k ok ok ok %k >k ko k ok
>k 3k 3k 3k 5k >k >k 3k 5k 3k >k >k >k 3k 3k 3k %k %k >k 3k 3k 5k >k >k 3k 3k 3k 5k %k %k 3k 3k 3k 5k %k >k 5k 5k 3k >k %k >k %k >k 5k %k %k >k %k >k k

3 *
* DDDD II FFFFFF FFFFFF X X %
* D D II F F aaaa XX *
* D D II FFFF FFFF a a X *
* D D II F F a aa X X *
* DDDD II F F aaa a X X x
* *

ook ok ok ok ok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ok ook sk ok sk ok sk ok ok ok ok ook sk ok sk ok sk
okskokskokokokokokskokskkokokokk DIFFaX v1.801 skokskskskskokokokokokskokskkkkok
ook ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ook sk ok sk ok sk
sorkokokskokskokskokkokkkkk  14th JULY, 1995 skskokskokskokokskokskokskokkokk
sk ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ook sk ok sk ok sk ok ok ok ok ok ok s ok sk ok sk ok sk ok ok ok ok ook sk ok sk ok sk

A computer program for calculating
Diffraction Intensity From Faulted Crystals

Authors: Michael M. J. Treacy
Michael W. Deem

* X X X X ¥ X
* X X X X ¥ X

>k >k K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k 5k %k >k 3K 3K 3k 3k 3k %k %k 5k 5k 5k %k X K 3K 5K 5K 5k 5k %k %k %k >k %k %k X >k 3K 3 5k %k %k %k %k k

Enter name of structure file.
dia.dat
Looking for structure data file ‘dia.dat’
Opening structure file ‘dia.dat’
Enter 1 for DUMP
1
Reading ‘dia.dat’
‘dia.dat’ read in.
Scattering factor data read in.
Enter 1 for full atomic position dump
1
Writing data dump to file ‘dia.dmp’. .
Using a ‘‘detune’’ value of 0.10000E- ~02
Enter 1 for a dump of the symmetry evaluations
1
Checking for conflicts in atom positions .
Evaluating point group symmetry of diffraction data.
Writing symmetry data to file ‘dia.sym’.
The diffraction data fits the point group symmetry ‘6/MMM’
with a tolerance of one part in 12376
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
3

CALCULATING POWDER DIFFRACTION PATTERN.
Enter angular range:
2theta min, 2theta max, 2theta increment.
0.0000 170.0 0.5000E-01
Enter 1 for adaptive quadrature on broad peaks.
1
Enter 1 for adaptive quadrature over all 1 values
on rows with ¢‘sharp’’ spots
1
Integrating along 1 at 0O O ‘dia.dat’
Full adaptive integration
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Integrating along 1 at 1 0 ‘dia.dat’
Full adaptive integration

Integrating along 1 at 1 1 ‘dia.dat’
Full adaptive integration
Integrating along 1 at 2 0 ‘dia.dat’
Full adaptive integration
Integrating along 1 at 2 1 ‘dia.dat’

Full adaptive integration

Adding pseudo-Voigt instrumental broadening
Writing spectrum data to file ‘dia.spc’.
Spectrum written.

Enter name of structure file.
Clustdia.dat
Looking for structure data file ‘Clustdia.dat’
Opening structure file ‘Clustdia.dat’
Enter 1 for DUMP
0
Reading ‘Clustdia.dat’
‘Clustdia.dat’ read in.
Scattering factor data read in.
Using a ‘‘detune’’ value of 0.10000E-02
Enter 1 for a dump of the symmetry evaluations
0
Checking for conflicts in atom positions .
Evaluating point group symmetry of diffraction data.
Diffraction point symmetry is 6/MMM
to within a tolerance of one part in 100
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
3

CALCULATING POWDER DIFFRACTION PATTERN.
Enter angular range:

2theta min, 2theta max, 2theta increment.

0.0000 170.0 0.5000E-01
Enter 1 for adaptive quadrature on broad peaks.

1

Enter 1 for adaptive quadrature over all 1 values
on rows with ¢‘sharp’’ spots

1
Integrating along 1 at 0 O ‘Clustdia.dat’
Full adaptive integration
Integrating along 1 at 1 0 ‘Clustdia.dat’
Full adaptive integration
Integrating along 1 at 1 1 ‘Clustdia.dat’
Full adaptive integration
Integrating along 1 at 2 0 ‘Clustdia.dat’
Full adaptive integration
Integrating along 1 at 2 1 ‘Clustdia.dat’

Full adaptive integration

Adding pseudo-Voigt instrumental broadening
Writing spectrum data to file ‘Clustdia.spc’.
Spectrum written.

Enter name of structure file.
FAU.dat
Looking for structure data file ‘FAU.dat’
Opening structure file ‘FAU.dat’
Enter 1 for DUMP
0
Reading ‘FAU.dat’
‘FAU.dat’ read in.
Scattering factor data read in.
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Using a ‘‘detune’’ value of 0.10000E-02
Enter 1 for a dump of the symmetry evaluations
0
Checking for conflicts in atom positions .
Evaluating point group symmetry of diffraction data.
Diffraction point symmetry is 6/MMM
to within a tolerance of one part in 100
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
3

CALCULATING POWDER DIFFRACTION PATTERN.
Enter angular range:

2theta min, 2theta max, 2theta increment.
0.0000 25.00 0.1000E-01

Enter 1 for adaptive quadrature on broad peaks.

1

Enter 1 for adaptive quadrature over all 1 values
on rows with ‘‘sharp’’ spots

1
Integrating along 1 at 0 O ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 1 0 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 1 1 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 2 0 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 2 1 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 2 2 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 3 0 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 3 1 ‘FAU.dat’
Full adaptive integration
Integrating along 1 at 4 0 ‘FAU.dat’

Full adaptive integration

Adding pseudo-Voigt instrumental broadening
Writing spectrum data to file ‘FAU.spc’.
Spectrum written.

Enter name of structure file.
beta.dat
Looking for structure data file ‘beta.dat’
Opening structure file ‘beta.dat’
Enter 1 for DUMP
0
Reading ‘beta.dat’
‘beta.dat’ read in.
Scattering factor data read in.
Using a "detune" value of 0.10000E-02
Enter 1 for a dump of the symmetry evaluations
0
Checking for conflicts in atom positions

WARNING: Atoms from layer 2 extend into layer 1
WARNING: Atoms from layer 8 extend into layer 1
WARNING: Atoms from layer 3 extend into layer 2

WARNING: Atoms from layer b5 extend into layer 2
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WARNING: Atoms from layer 4 extend into layer 3
WARNING: Atoms from layer 6 extend into layer 3
WARNING: Atoms from layer 1 extend into layer 4
WARNING: Atoms from layer 7 extend into layer 4
WARNING: Atoms from layer 2 extend into layer 5
WARNING: Atoms from layer 8 extend into layer 5
WARNING: Atoms from layer 3 extend into layer 6
WARNING: Atoms from layer b5 extend into layer 6
WARNING: Atoms from layer 4 extend into layer 7
WARNING: Atoms from layer 6 extend into layer 7
WARNING: Atoms from layer 1 extend into layer 8

WARNING: Atoms from layer 7 extend into layer 8
Evaluating point group symmetry of diffraction data.
Diffraction point symmetry is 4/MMM
to within a tolerance of one part in 100
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
3

CALCULATING POWDER DIFFRACTION PATTERN.
Enter angular range:

2theta min, 2theta max, 2theta increment.

0.0000 25.00 0.1000E-01
Enter 1 for adaptive quadrature on broad peaks.

1

Enter 1 for adaptive quadrature over all 1 values
on rows with "sharp" spots

1
Integrating along 1 at 0 O ‘beta.dat’
Full adaptive integration
Integrating along 1 at 1 0 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 1 1 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 2 0 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 2 1 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 2 2 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 3 0 ‘beta.dat’
Full adaptive integration
Integrating along 1 at 3 1 ‘beta.dat’

Full adaptive integration

Adding pseudo-Voigt instrumental broadening
Writing spectrum data to file ‘beta.spc’.
Spectrum written.

Enter name of structure file.
GaAs_GaAlAs.dat
Looking for structure data file ‘GaAs_GaAlAs.dat’
Opening structure file ‘GaAs_GaAlAs.dat’
Enter 1 for DUMP
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0
Reading ‘GaAs_GaAlAs.dat’
‘GaAs_GaAlAs.dat’ read in.
Scattering factor data read in.
Using a ‘‘detune’’ value of 0.10000E-02
Checking for conflicts in atom positions .
Checking for conflicts in layer stackings .
Axial integration only selected.
Enter function number:
0 POINT, 1 STREAK, 2 INTEGRATE, 3 POWDER PATTERN, 4 SADP
1

CALCULATING INTENSITY ALONG A STREAK.
Enter 1 for adaptive quadrature
1
Enter h, k, 10, 11, delta 1
0 O 3.50000 4.50000 0.00100
Writing streak data to file ‘GaAs_GaAlAs.str’.

Reached 1 = 3.54900
Reached 1 = 3.59900
Reached 1 = 3.64900
Reached 1 = 3.69900
Reached 1 = 3.74900
Reached 1 = 3.79900
Reached 1 = 3.84900
Reached 1 = 3.89900
Reached 1 = 3.94900
Reached 1 = 3.99900
Reached 1 = 4.04900
Reached 1 = 4.09900
Reached 1 = 4.14900
Reached 1 = 4.19900
Reached 1 = 4.24900
Reached 1 = 4.29900
Reached 1 = 4.34900
Reached 1 = 4.39900
Reached 1 = 4.44900
Reached 1 = 4.49900

Streak data file, ‘GaAs_GaAlAs.str’ written to disk.
Enter 1 to return to function menu.
0
Enter name of structure file.
end
DIFFaX ended normally.

B.3 DIFFaX output for diamond data file dia.dat in appendix A.1

Contents of the data dump file, dia.dmp for random faults in diamond.

The control file control.dif suggested in appendix B.1 requested a dump of the data
file. The data file was called dia.dat. The data dump is called dia.dmp. This file name is
assigned automatically by DIFFaX. The file dia.dmp should look like;

Contents of file dia.dmp

Number of layers = 2
Number of unique layers = 2
Number of different atom types = 1
cell_a, cell_b, cell_c, cell_gamma
2.5200 2.5200 2.0600 120.00

Layers are to be treated as having infinite lateral width.
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radiation type = X-RAY
Wavelength lambda = 1.5418
Diffraction point group symmetry specified = 6/MMM
Instrumental broadening to be simulated = PSEUDO-VOIGT
Full width half-maximum = 0.10000

Intensity near origin will be ignored

LAYER 1 is equivalent to fundamental LAYER 1
Existence probability = 0.50000

LAYER 2 is equivalent to fundamental LAYER 2
Existence probability = 0.50000

fundamental LAYER 1
symmetry = CENTROSYMMETRIC
LAYER composition is:
C : 2.00

ATOM number 1 in layer 1 is ‘C

x_rel y_rel z_rel DW Occ
-0.33333 -0.16667 -0.12500 1.0000 1.0000
X-ray scattering factor data Ai, Bi
2.3100 20.844 1.0200 10.207 1.5886
0.56870 0.86500 51.651 0.21560

fundamental LAYER 2
symmetry = CENTROSYMMETRIC
LAYER composition is:
C : 2.00

ATOM number 1 in layer 2 is ‘C

x_rel y_rel z_rel DW Occ

0.33333 0.16667 -0.12500 1.0000 1.0000
X-ray scattering factor data Ai, Bi

2.3100 20.844 1.0200 10.207 1.5886
0.56870 0.86500 51.651 0.21560

Average crystal composition is:
C : 1.0000

STACKING
Stacking is to be treated RECURSIVELY by DIFFaX.
Number of layers along the fault direction is INFINITE

TRANSITIONS
Layer stacking probabilities and stacking vectors.
S alpha_ij Rx_ij Ry_ij Rz_ij
_____ | mm e T
|
1 1] 0.70000 0.66667 0.33333 1.0000
1 2] 0.30000 0.00000 0.00000 1.0000
|
2 1| 0.30000 0.00000 0.00000 1.0000
2 2| 0.70000 -0.66667 -0.33333 1.0000
Anisotropic Layer stacking ‘uncertainty’ factors.
i g C11 €22 C33 C12 C13 C23
_____ | e
I
1 1] 0.000 0.000 0.000 0.000 0.000 0.000
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0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

0.000 0.000

0.000 0.000
0.000 0.000

B.4 Contents of the symmetry evaluation data file dia.sym

Contents of the symmetry evaluation data file

The control file control.dif also requested a dump of the symmetry evaluations. The

symmetry evaluation file is called dia.sym. This file name is assigned automatically by
DIFFaX. In abbreviated form, the file dia.sym should look like;

Contents of file dia.sym (partial listing)
SYMMETRY EVALUATIONS FOR DATA IN FILE ‘dia.dat’
Number of trials per symmetry element = 25
Threshold intensity = 0.612862E-04

Testing for 2-fold axis

h k 1 Intensity
0 1 1.2675 9.535522
0 -1 1.2675 9.535522

Average Intensity = 9.535522

Average variation = +/- 0.000000

Intensity tolerance = +/- 0.095355
Intensities are consistent with a 2-fold

h k 1 Intensity

1 0 0.2110 11.197628
-1 0 0.2110 11.197628
Average Intensity = 11.197628
Average variation = +/- 0.000000
Intensity tolerance = +/- 0.111976

Intensities are consistent with a 2-fold

h k 1 Intensity
1 1 1.2210 0.002129
-1 -1 1.2210 0.002129

Average Intensity = 0.002129

Average variation = +/- 0.000000

Intensity tolerance = +/- 0.000021
Intensities are consistent with a 2-fold

INTENSITY DISTRIBUTION HAS A 2-FOLD AXIS

Testing for a 3-fold axis

h k 1 Intensity
1 0 0.3126 31.816023
-1 1 0.3126 31.816217
0 -1 0.3126 31.816023
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Average Intensity = 31.816088

Average variation = +/- 0.000086 (+/- 0.27E-03%)
Intensity tolerance = +/- 0.318161
Intensities are consistent with a 3-fold
1 0 1.7739 0.763649
-1 1 1.7739 0.763618
0 -1 1.7739 0.763649
Average Intensity = 0.763639
Average variation = +/- 0.000014 (+/- 0.18E-02%)
Intensity tolerance = +/- 0.007636
Intensities are consistent with a 3-fold
0 1 1.1768 3.078191
-1 0 1.1768 3.078191
1 -1 1.1768 3.078178
Average Intensity = 3.078186
Average variation = +/- 0.000006 (+/- 0.18E-03%)
Intensity tolerance = +/- 0.030782

Intensities are consistent with a 3-fold

INTENSITY DISTRIBUTION HAS A 3-FOLD AXIS

Testing for mirror about the h-1 plane

h k 1 Intensity
1 1 0.6100 0.003514
2 -1 0.6100 0.003514
Average Intensity = 0.003514
Average variation = +/- 0.000000 (+/- 0.81E-06%)
Intensity tolerance = +/- 0.000035
Intensities are consistent with an h-1 mirror plane
1 1 0.6782 0.003939
2 -1 0.6782 0.003939
Average Intensity = 0.003939
Average variation = +/- 0.000000 (+/- 0.13E-05%)
Intensity tolerance = +/- 0.000039

Intensities are consistent with an h-1 mirror plane

1 1 0.2655 0.007861

2 -1 0.2655 0.007861

Average Intensity = 0.007861
Average variation = +/- 0.000000 (+/- 0.85E-07%)

Intensity tolerance = +/- 0.000079

Intensities are consistent with an h-1 mirror plane

THERE IS A MIRROR ABOUT THE H-L PLANE
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The diffraction data fits the point group symmetry ‘6/MMM’
with a tolerance of one part in 12376

B.5 Contents of the spectrum intensity file dia.spc

The spectrum data is stored as a text file in dia.spc. The spectrum data records are printed
in tab-delimited format, i.e.
‘20 in degrees’ tab ‘raw spectrum intensity’ tab ‘instrumentally broadened intensity’
The spectrum data file, in abbreviated form, should look like;
Contents of file dia.spc

.00000E+00 .000000 .000000
.50000E-01 0.144523E+08 .000000
.10000E+00 0.174739E+07 .000000
.15000E+00  446514. .000000
.20000E+00 162174. .000000
.25000E+00  72398.4 .000000
.30000E+00  37032.3 .000000
.35000E+00  20864.0 .000000
.40000E+00 12634.9 .000000
.45000E+00  8092.45 .000000
.50000E+00  5420.24 .000000
.55000E+00  3765.62 .000000
.60000E+00  2696.97 .000000
.65000E+00 1981.96 .000000
.70000E+00 1488.98 .000000
.75000E+00 1140.20 .000000
.80000E+00  887.827 .000000
.85000E+00  701.580 .000000
.90000E+00  561.714 .000000
.95000E+00  455.031 .000000
.10000E+01  372.518 .000000

[eNoNoNoRoNoRoloNoNoNoNoNoNoNoNoNoNoNoNoNe]

0.42600E+02  4.94228 5.00760
0.42650E+02  5.06303 5.12953
0.42700E+02  5.19179 5.25957
0.42750E+02  5.32847 5.39769
0.42800E+02  5.47297 5.54386
0.42850E+02 5.62516 5.69802
0.42900E+02  5.78480 5.86009
0.42950E+02  5.95161 6.02996
0.43000E+02  6.12520 6.20746
0.43050E+02  6.30506 6.39241
0.43100E+02  6.49056 6.58464
0.43150E+02  6.68092 6.78397
0.43200E+02  6.87521 6.99031
0.43250E+02  7.07237 7.20378
0.43300E+02  7.27120 7.42486
0.43350E+02  7.47046 7.65471
0.43400E+02  7.66894 7.89569
0.43450E+02  7.86566 8.15231
0.43500E+02  8.06030 8.43294
0.43550E+02  8.25393 8.75318
0.43600E+02  8.45062 9.14288
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0.43650E+02  8.66125 9.66243
0.43700E+02  8.91362 10.4459
0.43750E+02  9.28563 11.8648
0.43800E+02 10.0503 15.6333
0.43850E+02 12.7649 28.6585
0.43900E+02  74.8518 54.1308
0.43950E+02 115.226 61.2062
0.44000E+02 13.2889 34.3516
0.44050E+02  9.99240 16.9498
0.44100E+02  9.09912 12.0554
0.44150E+02  8.65015 10.3552
0.44200E+02  8.33094 9.42702
0.44250E+02  8.05508 8.80419
0.44300E+02  7.79252 8.32827
0.44350E+02  7.53186 7.92957
0.44400E+02  7.26908 7.57430
0.44450E+02  7.00346 7.24517
0.44500E+02  6.73576 6.93314

0.16900E+03 0.785915E-01 0.511187E-01
0.16905E+03 0.786012E-01 0.503597E-01
0.16910E+03 0.786109E-01 0.495880E-01
0.16915E+03 0.786207E-01 0.488042E-01
0.16920E+03 0.786305E-01 0.480089E-01
0.16925E+03 0.786405E-01 0.472027E-01
0.16930E+03 0.786505E-01 0.463863E-01
0.16935E+03 0.786605E-01 0.455605E-01
0.16940E+03 0.786706E-01 0.447260E-01
0.16945E+03 0.786808E-01 0.438837E-01
0.16950E+03 0.786911E-01 0.430346E-01
0.16955E+03 0.787014E-01 0.421796E-01
0.16960E+03 0.787117E-01 0.413196E-01
0.16965E+03 0.787222E-01 0.404558E-01
0.16970E+03 0.787327E-01 0.395891E-01
0.16975E+03 0.787432E-01 0.387207E-01
0.16980E+03 0.787538E-01 0.378517E-01
0.16985E+03 0.787644E-01 0.369832E-01
0.16990E+03 0.787751E-01 0.361164E-01
0.16995E+03 0.452758E-01 0.352524E-01
0.17000E+03 0.250168E-15 0.343923E-01

B.6 Plotted output from the control file run

The powder pattern data can be plotted by any plotting program that accepts tab-delimited
text data files. The following plots were constructed using a Macintosh plotting program

called Igor™.
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Figure 17: Plot of unbroadened data in file dia. spc.
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Figure 18: Plot of pseudo-Voigt broadened data in file dia.spc.
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Figure 19: Plot of unbroadened data in file Clustdia.spc.
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Figure 20: Plot of pseudo-Voigt broadened data in file Clustdia.spc.
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Figure 21: Plot of unbroadened data in file FAU. spc.
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Figure 22: Plot of pseudo-Voigt broadened data in file FAU. spc.
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Figure 23: Plot of unbroadened data in file beta.spc.
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Figure 24: Plot of pseudo-Voigt broadened data in file beta. spc.
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Figure 25: Plot of the “streak” data in GaAs/GaAlAs.str.
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Figure 26: Plot of the “streak” data in GaAs/GaAlAs.str, expanded about [ = 4.
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B.7 Reprint.

A general recursion method for
calculating diffracted intensities from crystals
containing planar faults

By M. M. J. TreacYt, J. M. NEwsamf anp M. W. DEEm

Ezxxon Research and Engineering Company, Route 22 East, Clinton Township,
Annandale, New Jersey 08801, U.S.A.

A general recursion algorithm is described for calculating kinematical diffraction
intensities from crystals containing coherent planar faults. The method exploits the
self-similar stacking sequences that occur when layers stack non-deterministically.
Recursion gives a set of simple relations between average interference terms from a
statistical crystal, which can be solved as a set of simultaneous equations. The
diffracted intensity for a polyerystalline sample is given by the incoherent sum of
scattered intensities over an ensemble of crystallites. The relations between this and
previous approaches, namely the Hendricks-Teller matrix formulation, the dif-
ference equation method, the summed series formula of Cowley, and Michalski’s
recurrence relations between average phase factors, are discussed. Although formally
identical to these previous methods, the present recursive description has an
intuitive appeal and proves easier to apply to complex crystal structure types. The
method is valid for all types of planar faults, can accommodate long-range stacking
correlations, and is applicable to crystals that contain only a finite number of layers.
A ForTRAN program DIFFaX, based on this recursion algorithm, has been written
and used to simulate powder X-ray (and neutron) diffraction patterns and single
crystal electron (kinematical) diffraction patterns. Calculations for diamond-
lonsdaleite and for several synthetic zeolite systems that contain high densities of
stacking faults are presented as examples.

1. Introduction
1.1. General

Planar faulting is a widespread phenomenon in real crystals. It is manifested by
streaking in single crystal diffraction patterns and by index-dependent peak widths
and diffuse scattering in powder diffraction patterns. The presence of faulting is
particularly noticeable when diffraction data are recorded at the high angular
resolutions afforded by today’s synchrotron and neutron diffractometers.

Interpretation of such diffraction data requires an ability to simulate the effects of
stacking disorder. Although the problem of diffraction from one-dimensionally
disordered systems has been treated theoretically by a number of authors over the
past five decades, these earlier treatments are specialized and difficult to apply
generally, particularly for complicated crystal structures.

+ Present address: NEC Research Institute Inc., 4 Independence Way, Princeton, New Jersey 08540, US.A.
1 Present address: Biosym Technologies Inc., 10065 Barnes Canyon Road, San Diego, California 92121,
US.A.
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In this paper we discuss the principal earlier treatments and then consider the one-
dimensional disorder problem in terms of recursion, an approach applied in-
dependently by Michalski (Michalski 1988 ; Michalski et al. 1988) to the specific case
of close-packed polytypic systems. We derive here a general recursion algorithm that
does not require assumptions of layer coherence or of infinite platelet thickness, and
which is applicable to any stacking configuration. We show that the recursion
approach can be quite general and detail how it relates to the Hendricks & Teller
(1942), Cowley (1981) and Michalski (1988) treatments. However, unlike these earlier
treatments, the recursion algorithm provides an intuitively straightforward
approach to the stacking disorder problem, facilitating its application to complex
crystal systems.

A FORTRAN program, DIFFaX (diffracted intensities from faulted Xtals), has been
written, implementing this algorithm. Although the present code is too lengthy (ca.
6500 lines) to discuss here in detail, the methods used to overcome some of the more
pernicious numerical pitfalls are outlined. Examples are given of the application of
this program to twinning in the close-packed diamond-lonsdaleite system, and to
three families of zeolites that contain variable densities of growth faults.

1.2. Historical background

The diffracted intensity from a large sample of faulted crystals is the weighted,
incoherent sum of the diffraction patterns arising from each occurring crystallite
orientation and defect arrangement. It is straightforward to calculate explicitly the
diffracted intensity from any one stacking configuration. However, the com-
putational effort quickly becomes prohibitive when there are many permutations of
faults to consider. Mathematical treatments of diffraction from faulted crystals seek
to reduce significantly the number of terms that need be calculated explicitly to
manageable proportions.

The one-dimensional problem was first tackled by Landau (1937), who gave
formulae for the diffracted intensity from crystals containing arrangements of
lamellar domains of variable width that are shifted relative to one another. Lifshitz
(1937, 1939) extended this treatment to include different layer types and variable
layer spacings. Wilson (1942, 1943) presented a difference equation method, where
the probability that a given layer type will occur at a given position is related to the
probabilities that the layer has occurred at previous layer positions. This treatment
was successfully applied to explaining diffraction patterns measured from hexagonal
cobalt, and to AuCu, containing antiphase boundaries. The difference equation
approach forms the basis of the standard textbook treatment of diffraction from
faulted crystals (Warren 1959, 1969) and has been widely used for studying faulting
in close-packed structures.

A more general treatment, based on correlation probability matrices, was
developed by Hendricks & Teller (1942), who included the effects of nearest
neighbour layer-layer correlations and variable layer-layer stacking vectors. This
approach was also used successfully to explain peak broadening data from layered
materials such as staged graphite (Cajipe et al. 1989), mica and close-packed
structures. A computer program using this theory, which calculates the (00/) powder
diffraction patterns of interstratified clay minerals (Brindley & Brown 1980), has
been developed by Reynolds (1980).

Many authors have since elaborated on the difference equation and Hendricks-
Teller descriptions. In particular, Kakinoki & Tomura (1965) described three
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distinct approaches to solving the Hendricks—Teller matrix equations and derived
explicit solutions for close-packed systems (Kakinoki & Tomura 1951, 1952;
Kakinoki 1967). Independently, Allegra (1961, 1964) pointed out that the method of
solution adopted by Hendricks & Teller (1942), involving a matrix diagonalization,
could be circumvented and replaced by a less costly matrix inversion. In a series of
papers, Jagodzinski (1949a—c, 1954) obtained solutions for various ranges of
interaction, s (or Reichweite), between layers, allowing for clustering, or correlations
between stacking sequences. Within this description, the probability of a given layer
occurring depends on the character of those layers up to s layers removed from that
given layer. His treatment distinguished between a position disorder due to stacking
errors alone, and a type disorder where layers have variable atomic compositions.
The case of mixed type/position disorder was also treated by Jagodzinski (1949 a) for
the case s=1. Gevers (1952, 1954a, b) extended this work, providing formal
solutions for the cases s =4 and 6. However, as noted by Jagodzinski, numerical
solution becomes time consuming for s > 3. Holloway (1969) generalized the solution
for close-packed structures in a way that eliminated the need to explicitly solve the
difference equations. Recently, several authors (Wellbery 1985; Berliner & Werner
1986) have reviewed and presented adaptations of the difference equation methods.

Michalski (1988) recently showed that the treatment of Holloway (1969) could be
further simplified by constructing recursion relations between average phase factors
for crystals beginning on each of the various layer types. He derived explicit
expressions for faulted polytypic crystals (Michalski et al. 1988).

Cowley (1976a, b, 1981) adopted a different approach to the problem of one-
dimensional disorder in infinite crystals. By inspecting the individual layer-layer
interference terms in the Patterson function, he was able to separate intensity
contributions from the nth layer into ‘no-fault’ and ‘fault’ terms. The no-fault terms
could be summed as a simple geometric series, and the residual fault terms could be
grouped as nested subseries which in turn could also be summed explicitly. The nth
nested term represented a contribution to the diffracted intensity from faults at the
nth layer. He noted that in certain simple cases the whole sequence could be summed
in closed form. For more complex structures, the series could be terminated after a
few terms, particularly if the fault probabilities were small. Because the fault and no-
fault terms were separately summed, the series converges quickly for low fault
probabilities. The attraction of this approach is that, with a knowledge of the fault
probabilities, the interlayer stacking vectors, and the layer form factors, Cowley’s
equation provides a perfectly general ready-to-use solution, with no need on the part
of the user to scrutinize faulting patterns to derive difference equations. This
summed series approach has been effective in studying streaking in electron
diffraction patterns from close-packed materials (Cowley & Au 1978) and some
faulted minerals (Cowley 1976b). Despite its generality, the equation becomes
numerically tedious to evaluate for large fault probabilities and for structures
containing many atoms or layer types. Additionally, most faulted structures can be
considered to be intermediate members of a family of materials, whose end-members
might best be defined by fault probabilities of zero and unity. Such end-members are
themselves perfect structures, and the definition of a single unfaulted structure is
thus artificial, and the term fault probability becomes ambiguous. In general, it is
preferable to define stacking, rather than fault probabilities, without a requirement
that these probabilities be small, or close to unity.

The difference equation method, the Hendricks—Teller matrix method, and
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Cowley’s summed series method are related (Kakinoki & Tomura 1965; Kakinoki
1967) and represent different book-keeping methodologies for the stacking sequences
and layer types. However, although all of these methods are of proven value for
treating close-packed structures, the various mathematical formalisms can obscure
the physical aspects of the problem for the general user, and these approaches have
proved difficult to adapt for more complex structures. For example, it is only
recently (Newsam et al. 1988; Vaughan et al. 1989), that detailed analyses of
diffraction from faulted zeolites have been attempted.

2. Disorder in one dimension
2.1. Diffraction described recursively

Although, as outlined above, the problem of calculating diffraction intensity from
faulted crystals has been studied by a number of earlier authors, we show here how
the problem can be formulated in a simple closed recursive form, and how this
description is related to the previous methods. We suppose that a crystal contains a
total of N layers, and that there are M distinct types of layer. Each layer type ¢ will
have an electron density p,(r) about an arbitrary origin. We further suppose that
there is a probability a;; that an i-type layer will be followed by a j-type layer, with
a vector R;; connecting the two local layer origins. For a crystal which has a layer of
type i at the crystal origin, followed by a layer of type j, which in turn is followed

by a layer of type k, etc., the scattering potential Vi)  (r) is

Vg')]c)l...(r) = pi(r)+p1(r_Rij)+plc(r_Rij_lec)+pl(r—Rij_RjIc—Rkl)+"" (1)

The probability that any given crystal in a large sample will form such a sequence
is given by the probability product g;a;; a;; &, ... . The term g; represents the a priori
probability that a layer of type ¢ will exist, and is found by equating the transition
probabilities between type ¢ and the other type layers

9 = 20;%; (2)
Y

and from the normalization conditions
Zgl=1, Zawzl (3)
i Jj

The kinematically scattered wave function for this sequence is given by the
Fourier transform of V{)  (r) (the Born approximation), thus

0 ()= j V0 (r)exp (—2niu-r) dr

= F,(u)+exp (—2miu- R;) F;(u) +exp (—2miu- (R;;+ Ryy)) Fy(u)
+exp (—2miu- (R;+ Ry, + Ry,)) Fy(u)+ ... (4)
Here, u is the reciprocal space scattering vector and F;(u) is the layer form factor, the

Fourier transform of p,(r). The diffracted intensity distribution from this sequence is

PN* M. .. The diffracted intensity I(u) from a statistical (oriented) ensemble of

crystallites is the weighted incoherent sum over all stacking permutations, that is

Iw)= X gyou0u - e ... (5)

G0k, .
For a crystal of N layers, containing M layer types, there will be MY stacking
permutations (ignoring any degeneracies resulting from special layer symmetries, or
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constraints on the character of the R;;). Explicit summations of the type given by
equation 5 rapidly become impractical for large N. Considerable simplification can be
achieved by judiciously grouping terms. Expanding equation (5) we get

I(u)= 2z gi %45 ]kalcl"'{Fz*(u)

0i kL
+exp (2miu- R;) F}(u) +exp (2niu- (R;+ R;,)) Fi (u)

+exp (2miu- (R;+ Ry + Ry,)) Ff(u)+ ...}

{F,(u)+exp (—2miu- R;;) F;(u) +exp (—2niu" (R;;+ Ry,)) Fy(u)

+exp (—2miu- (Ry;+ Ry + Ryy) Fy(u) + ...} (6)

Now, the ensemble-average scattered wave function ¢{™(u), representing the
average over all crystals containing exactly N layers which begin on i-type layers, is
given by the nested series

M (u (u)+ Z a; exp (—2miu- R;) [Fj(u) + X oy exp (—2miu- R,,) [Fy(u)
k
+ XY oy, exp (—2niu- Ry,) [Fy(w)+...]1].  (7)
l

Inspection of equation (7) immediately yields a relation between the ¢{(u) and

B (w)
B (u) = Fy(u) + T oty exp (—2mine- Ryy) ¥ (u)
with ¢ u) = 0. 8)

By using ¢{¥ () and its complex conjugate ¢ (u)*, equation (6) can be expanded
term by term, to produce the series

I(u) = E gi(F () §N () + () 0 () * — | F(@)]*)

+ gy (@) 4570 @)+ Fa) ¢ 00 = B
+ B giy 0 (Fi ) o2 @) + Fw) g2 @)* = 1F@)P) +.... (9)
i,k

By using the normalization equation (2), this condenses to

N-1

Iw) = 3 Tg,(Fu) ¢ () +Fyu) g™ (u)* = |Fy(u)]*). (10)

m=0 i

The summation over m can be simplified by rewriting the relations in matrix form.
Using @™ and F for the one-dimensional matrices [¢{"" ()] and [F;(u)], and T for the
two dimensional stacking operation probability matrix [o;;exp(—2miu-R;)],
equation (8) can be rewritten as

N-1
&M = F+ ToW¥-V = 3 T"F. (11)

n=0

By using G = (g, F;(u)], equation (10) becomes

N—-1N-m-1
Iwy=Y ¥ (G*¥'T"F+G T*"F*—G*™F) (12)
m=0 n=0
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G" is the transpose of G, and G* is the complex conjugate of G. Equation (12) is at
the heart of the Hendricks & Teller approach (Hendricks & Teller 1942 ; Kakinoki &
Tomura 1965). We introduce the quantity
1 N-1N-m-1
YI(N) —_ N E Z T*"F
m=0 n=0

= (1/N){NF+(N—1) TF+(N—2) T*F+...+ T""'F}, (13)
which represents the average interference term from an N-layer statistical crystal.
Thus, there are N single layers which contribute only intra-layer interference terms,
N—1 nearest neighbour layer pairs, N—2 next nearest neighbours, etc. The content
of the braces in equation (13) is a well-known geometric series and can be readily
summed to give

Yo = (I-T) Y1 /N){(N+ 1) I-I-T)I-T"* )\ F= (I-T)'F". (14)
I is the unit matrix having the same dimensions as T, and (I—T)™! is the inverse of
the matrix (I— T). Equation (14) can be rewritten in the equivalent form
PN = F TN, (15)
which emphasizes the recursive nature of the interference terms ¥,
F’ is a modified layer form factor, and is given by

F = (1/N){(N+1)I—I—T)*(I—T"*")} F. (16)
By using equation (12), the normalized diffracted intensity is
I(u)/N = G*¥TYWN + GTYN* — G*TF. (17)

For any N, the matrix (I—T)"}(I—T"*!) in equation (16) is always bounded
provided det (I—T) # 0. In the special case when det (I—T) =0, the diffraction
vector u is near a sharp spot and all of the u* R;; have integer values. The infinite
intensity that occurs in this case is equivalent to a delta function, with finite
integrated intensity over the interval du spanning the sharp spot at u. Analytic
broadening of these sharp spots is possible (see §2.2 below), and thus it is found that
in general, F’ ~ F as N— oo. Equation (14) then simplifies further (using equation
(11) to give YW~ = W ~>2); that is, in an infinite crystal, the average interference
term is equivalent to the ensemble-average scattered wavefunction. At the other
extreme, in the limit N = 1, ¥® = @Y = F and F’ = (I—T) F as would be expected
if the crystal comprised only one layer.

The recursive nature of the diffraction problem is easiest to visualize for the case
of a crystal containing an infinite number of layers. Equation (15) can be rewritten
using the ensemble-average scattered wavefunctions @ (where here, N— o0 is

implicit) to give &= F+To. (18)

Figure 1 illustrates this recursion relation graphically, for an infinitely thick
crystal containing two types of layer, designated 1 and 2. Despite the infinite number
of stacking permutations possible, there are only two distinct types of average
sequence that can occur, namely, A sequences which begin on a type 1 layer, and B
sequences which begin on a type 2 layer. Inspection of the stacking trees in figure 1
shows that these two sequences can be found embedded within one another, as
outlined by the boxes in figure 1. Because of the recurrence, the ensemble-average
scattered wave function from each type of sequence does not need to be calculated
explicitly, as they are intimately related to each other. If &), = a,,, then layers 1 and

Proc. R. Soc. Lond. A (1991)

98



A general recursion method 505

Flgure 1 Dlagram lllustlatmg the recursive relation between t;he ensemble average seattered
wavefunctions from crystals which have layers of type 1 (left) and type 2 (right) at the origin. Note
how the two distinct sequences, A and B, can be found embedded within one another.

2 occur in equal quantities, giving g, =¢, =3 For this infinite structure, the
ensemble-average wavefunctions are given by the simultaneous equations

¢u)=Fu)+ X “ijexp(_2mu'Rij)¢j(u)a (19)
j=1,2
or more explicitly
é,(u (u)+ oy, exp (—2miu- Ry,) ¢, (1) +a,exp (—27iu- R,,) Po(u),
Po(u (u) + oty exp (—2miu R,;) ¢, (u) + agy €xp (— 2miu- R,,) ¢,(u).

¢, and ¢, are readlly found by linear algebra and the diffraction intensity is given by

lim % YF*® + Fd*—|F?)

N>

Il

[

F(u) @i(w)+ Fy(u) ¢F (1) — |Fy(u)[?). (20)
=1,2

Similar diagrams can be drawn for more complex structures. It should be noted
that the recursion model also applies to perfect crystals, even if they have only one
layer type with only one possible stacking vector.

Thus computation of the diffracted intensity from a crystal system requires a
knowledge of the individual layer structures (from which the layer form factors F;(u)
can be computed), the stacking transition probabilities a;, and the inter-layer
vectors Ry;. The normalized ensemble-average wavefunctions are completely defined
by their recursive properties when the stacking operation T is applied (equations (14)
and (16)). The diffracted intensity, normalized to the number of layers in the crystal,
is then given by equation (17). Provided the system is being treated on a statistical
basis, the recursive character of the layer stacking sequences is independent of the
particular crystal system being studied, making it straightforward to implement a
general computer program that works for all crystal types. The practical limitations
are the speed with which the simultaneous equations can be solved, and, in the case
of complex structures such as zeolites, the speed with which the layer form factors
can be calculated. There is a further concern in the case where N is finite where the
computation of T%*! can also become time consuming, even with efficient matrix
multiplication algorithms.

The possibility of layer modifications, which depend on the type of stacking
transition, can be handled by replacing the F; with an average value {(F;) in the
manner suggested by Cowley (1976a)

(Fy(u)) =Fi(")'*‘2“ij AF;(u), (21)
i
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where F; + AF;; represents the perturbed structure factor of layer ¢ when it is followed
by layer j. Such perturbations could arise from subtle strains imposed by the various
neighbouring layer types. Layer—layer correlations, which will result in clustering,
may be treated either explicitly from the definitions of the «;;, or by representing
groupings of layers as distinct layer types.

2.2. Implementation as a computer program : practical considerations

A general purpose FORTRAN 77 program, DIFFaX, for calculating diffracted
intensity from faulted crystals, has been written by the authors. Versions of DIFFaX
have been run on a CRAY X/MP14SE, a VAX 11/8350, a Silicon Graphics Personal
Iris and a Macintosh II. In its present version it accepts any crystal system that
contains coherent planar defects, that is, all layers must share the same in-plane
@, b unit cell vectors and interconnect along ¢. Although the fundamental algorithm
introduced above is not restricted to the case of in-plane coherence, considerable
computational speedup is achieved when it is assumed that intensity is restricted to
integer h, k reciprocal lattice vectors. The faulting then creates a continuum of
intensity along .

The layer form factors F;(u) are readily calculated by using the relation,

Fiu)= X @,f,(u)exp (—2M,(u)lu*) exp (—2riu-r,), (22)

p=1

where n; is the number of atoms in the layer, r, is the position of atom p relative
to the layer origin, £, is the atom site occupancy and M, is the isotropic Debye—
Waller factor. With coordinates given relative to the unit cell a, b and e,
wr,=hry, +kry, +ir,,.

Sharp peaks (i.e. peaks not broadened by the faulting) are a special concern for
numerical integration algorithms since they occur at the singularities where
det (I— T) = 0. Such sharp peaks are essentially delta functions, and occur at those
reciprocal lattice points u where, simultaneously, all of the - R;; have integer values.
Kinematically forbidden spots occur when all the F;(u) = 0, and this may coincide
with a sharp peak position.

To integrate intensities numerically in a stable fashion, it is essential to detune the
sharp peaks, such that division by zero is avoided and such that the peaks develop
a detectable width. A successful trick that does not distort the integrated intensities
significantly is to introduce an element of uncertainty in the phases associated
with the stacking vectors, that is, replace the 2rnu'R,; with 2nu-R;+e¢;. If we
suppose that there is a gaussian distribution of possible values of ¢;; with standard
deviation o, then the average wavefunction will also be averaged over all possible
€;;- The modified recursion relation becomes

Y(u) ([t . .
¥, (u) = F,(u)+ %} o mj exp (—ej;/207;) exp (—2miu- Ry;—ie;;) dey;

= Fj(u)+ X a;exp (—20%) exp (—2miu- R;;) ¥j(u)
i

= Fy(u) + X a;exp (—2miu- R;;) ¥ ;(u). (23)
j

The outcome is that, for o, <1, a;; is replaced by the slightly smaller value
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aj; & a; (1—20%), and the probability summations, X,a;;, are slightly less than
unity. This ensures that the determinant det (I— T) is always positive and non-zero.
It is found that setting 20} = 1073 provides sufficient detuning to stabilize the
integration while maintaining acceptable integration accuracy for most purposes.

Strictly speaking, a constant value of o; for all - R;; is not physically meaningful.
At point u in reciprocal space, it may be interpreted locally as an uncertainty in
stacking vector AR;; through the relation o;; = 2nu- AR;;. The value of AR;; will vary
with diffraction vector u for constant o;;. In effect, each singularity sees a different
interpretation for the uncertainty AR;; which becomes smaller in magnitude as u gets
larger. This latter property has the desirable effect that the phase term 2miu-AR,;;
does not increase to unacceptably large values at large u.

In a similar manner, a set of anisotropic layer stacking uncertainty parameters
may be defined, B,,, B,,, Bss, Bya, Bas, Bs;,- These coefficients act in the same way as
the anisotropic temperature factors for atom position uncertainty. Use of such
stacking uncertainty parameters is potentially useful for simulating situations where
layer stacking is only partially coherent along certain directions, such as in liquid
crystals, layered clays or staged graphite intercalation compounds. The transition
probability values are replaced by

aj; = ajexp[—i(B,, h*a** + By k*0**+ B Ic**+ 2B, hka*b*
+2B,, klb*c* +2B,, lhc*a*)], (24)

where a*, b* and c* are the reciprocal cell dimensions.

Calculations can be made for any type of radiation, electrons, X-rays, neutrons,
etc., through the use of the appropriate atomic scattering factors f,(u). X-ray
intensities are weighted in the usual way by the Lorentz-polarization factors (Warren
1969). For powder electron, and neutron diffraction pattern simulations, there is no
polarization term. The geometric factor of 1/sin (263) (where 0y is the Bragg angle)
is still required to allow for the probability that a randomly oriented crystallite
would be in the correct orientation for diffraction into u = hkl. Fuller details of these
factors can be found in Warren (1969).

There are ten possible point groups that can describe the symmetry of the
distribution of diffraction intensity in reciprocal space in the presence of streaking
along one axis. These are, 1, 2/M (diad along streaks), 2/M (mirror contains
streaks), MMM, 3, 3M, 4/M, 4/MMM, 6/M, 6/MMM. These are a sub-set of the
standard 32 crystallographic point group symmetries. This sub-set arises because,
first, we assume kinematical scattering, which implies the presence of an inversion
centre at the origin (Friedel’s law). Secondly, the presence of streaking along c*
prohibits the occurrence of the inclined 3-fold axes found in the cubic point groups.
For powder diffraction calculations, significant computational speed-up can be
achieved by establishing in advance which of the 10 point groups apply, and by
restricting computational effort to an appropriate segment of reciprocal space.

2.3. Running DIFFaX

The user supplies a formatted data file that describes the layer structures, cell
dimensions, the inter-layer stacking vectors and stacking probabilities, as well as the
radiation type and wavelength. X-rays, electrons and neutrons are accepted as
radiation types. Other parameters are entered interactively in response to a series of
prompts.
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The user can request one of five output modes. (1) The intensity at the reciprocal
lattice vector hkl. (2) The integrated intensity along [ within the interval hkl, to hkl,.
(3) A line trace of intensities along [ within the interval Akl to hkl,, with step size Al.
(4) Powder pattern intensities within the range 6, and 6, with step size Af. Gaussian,
lorentzian or pseudo-Voigt instrumental broadening functions can be applied to the
data. (5) Single crystal patterns viewed along directions perpendicular to the c¢*, or
streak axis.

Results from options 1 and 2 are supplied interactively to the computer screen,
and are useful for debugging data files. Options 3 and 4 produce tab-delimited text
files which can be read by several common graph plotting programs. The single
crystal option, 5, produces a 256 x 256 pixel image with 256 grey levels. This is saved
as a binary file which can be displayed and edited by many commonly available
image processing programs.

The powder pattern option, 4, is the most computationally intensive. To ensure
that any unbroadened peaks are not missed by the comparatively coarse sampling
grid, a full-adaptive 16 point gaussian quadrature integration algorithm is employed.
This results in a minimum of 48 intensity samplings per A6 step. This sampling rate
increases in regions where the intensity changes rapidly, such as near the
unbroadened peaks. The time required to compute the intensity at a reciprocal
lattice point depends predominantly on the sum of two terms. The first term is the
time taken to calculate the layer scattering factors which varies as the product of the
number of unique layers, and the average number of atoms per layer. The second
term is the time required to solve the simultaneous equations, which varies
approximately as the cube of the number of layers. To ensure optimum performance,
DIFFaX can automatically establish a suitable point group symmetry for the data.
On a Macintosh 1Ifx computer the zeolite powder pattern examples, presented later
in this paper, typically required about 1 hour of computation time. The total time
will vary roughly as the cube of the upper scattering angle 6,. The user has the option
of disabling the full-adaptive integration mode and to request DIFFaX to guess the
location of the unbroadened peaks. This can gain an approximate factor of two in
speed, but with some loss of precision and the risk that some peaks may be missed
altogether.

For batch jobs where many data files need to be run unattended, DIFFaX can be
run non-interactively using a control file which contains the data file names and the
various parameters needed to run each file. (A copy of the DIFFaX FORTRAN source
code, along with instructions and example data files, can be obtained by contacting
M.M.J.T.)

3. Examples

We present here, briefly, some results where the recursion algorithm has been
applied to simulate peak broadening in powder X-ray diffraction patterns from
several different crystal systems. The first example is from the relatively simple
close-packed diamond-lonsdaleite system. The subsequent three examples are from
zeolite systems. The examples are chosen to demonstrate the flexibility and
generality of the recursion algorithm and, in particular, to emphasize that it is not
restricted to close-packed crystal systems.

Proc. R. Soc. Lond. A (1991)

102



A general recursion method 509

@=10 Cubic
=09 diamond
=08
| =07
) =06
J a=05
=04
a=03
| =02
a=01
A a=00

T T T T T T T
o 20 40 60 80 100 120 140 160

26/deg

Figure 2. Montage of powder X-ray diffraction patterns calculated as a function of the probability
that layers in a diamond crystal will stack in the cubic diamond sequence. Thus & = 0 corresponds
to pure lonsdaleite, and a = 1 corresponds to pure diamond. Note the peak broadening and the
disappearance of certain peaks as the stacking probability is varied between 0 and 1. The defects
simulated in this sequence are analogous to growth twins. Instrumental peak broadening was
simulated using a pseudo-Voigt function with « = 0.89, v = —0.32, w = 0.08 and y = 0.6. The step
size was Af = 0.01°.

3.1. 111 twin faults in the diamond—lonsdaleite system

Diamond is cubic with space group symmetry Fd3m. Twinning can occur on (111)
planes. Full twinning recurrence generates the hexagonal analogue, lonsdaleite, that
has space group symmetry P6,/mmc, with the hexagonal [001] axis parallel to the
cubic [111] direction.

The diamond structure can be described in terms of stacking of cubic (111) layers,
where successive layers are related by inversion operations, i. The carbon atoms in
these layers are arranged to form puckered hexagons. The structure of the mineral
lonsdaleite can also be described in terms of these (111) layers, but successive layers
are related by a mirror operation, m. The two types of stacking operation can coexist
in some materials.

The two layer types can be designated by the symbols ¢ ® (for type 1), and ® o
(type 2) that emphasize their relation to one another through a vertical mirror plane.
The interlayer stacking vectors, in terms of the hexagonal unit cell vectors a, b and
¢ (where a and b are in the plane of the layer), are

R, =%2a+b+c),

R R, =ic,

R,, =X¥—2a—b+c).
The ¢ component is the same for all four vectors.

For a random fault distribution (where there are no layer-layer correlations) the
stacking transition probabilities obey the relations

12
22

Ay = gy = 1=, = 1—ay,.
Figure 2 shows a series of powder X-ray diffraction patterns calculated as a
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function of the cubic stacking probability «,;. The end-member with o, =1
corresponds to 100 % inversion operations, i.e. pure diamond, and the end-member
with a,;, =0 corresponds to 100% mirror operations, i.e. pure lonsdaleite.
Pronounced peak broadening occurs for interim values of a,,. However, peaks
occurring at those diffraction vectors u such that all u-R; = 2nn (i.e. when
h—k = 3n), have invariant widths.

Although this is a relatively simple example of the use of DIFFaX, calculations of
this type may prove helpful in characterizing synthetic polycrystalline diamond
films which can contain microcrystals showing significant twinning densities
(Hetherington et al. 1990).

3.2. Zeolite examples

Zeolites are aluminosilicates in which all aluminium and silicon atoms are
tetrahedrally coordinated by (bridging) oxygen atoms (Newsam 1991). Zeolite
frameworks generally contain cages which may be interconnected along one or more
directions to form channels. Some 64 observed zeolite framework topologies are listed
in the current edition of the Atlas of zeolite structure types (Meier & Olson 1987), and
the number continues to rise steadily. Over 80 are given in the current version of
ZeoFile (Newsam & Treacy 1991). Zeolites are generally metastable and unless
stopped in time, a hydrothermal synthesis will typically proceed to a more stable,
denser phase, such as phillipsite, analcite or quartz. Owing to the conditions of
kinetic control under which zeolites are synthesized, they frequently contain planar
faults.

Framework topologies can be categorized into families that share common
structural building units somewhat larger than individual tetrahedra. In several
instances, distinct zeolite structure types differ only in the manner in which
successive sheets are linked along a given direction, providing possibilities for
intergrowths. In practice, planar faulting is relatively common, although it varies
markedly in degree from one system to another. Frequently, the differences between
materials can be detected as subtle variations in peak shapes and intensities in powder
X-ray diffraction spectra. The simplicity of the recursive approach to simulating
diffraction means that DIFFaX lends itself readily to analysing diffraction patterns
from these complex structures.

We present here a summary of studies we have carried out on three zeolite
systems; faujasite (FAU)/‘Breck’s Structure 6’ (bss), zeolite beta (bea-beb) and
ZSM-5 (MFI)/ZSM-11 (MEL). The FAU-bss system is related to the diamond case
described above, except that defects are frequently observed to be clustered. The
zeolite beta system exhibits an unusual type of twinning, where sheets can connect
through either 4, or 4, twinning operations. The MFI/MEL system is an example of
pure type disorder where the stacking vectors for all layer types are identical. Only
the layer structures differ.

3.2.1. Clustering of 111 twin faults in faujasite/  Breck’s structure 6’ materials

The structure of faujasite is cubic, with the same space group as diamond, Fd3m,
but with an aluminosilicate sodalite cage (or B-cage) centred at each of the lattice
points (carbon atom positions in diamond). Furthermore, there are shared oxygen
atoms at the (111) layer connections.

As for diamond, (111) twin faults can occur and they are frequently observed to
be clustered in the FAU/bss system. A Reichweite of 1 (where layers ‘remember’
how the preceding layer was stacked) can be handled by increasing the number of
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Figure 3. Diagram illustrating how sheets of sodalite cages can connect in a crystal to form localized
regions of predominantly hexagonal (bss), or predominantly cubic (FAU) material. In this
example, sheets retain a memory of how they are connected to the preceding layer (shown here as
shaded layers), and this may influence the connectivity to the next layer. Four distinet layer types
are required to model this situation where the Reichweite is 1. The view here is along [110] in the
cubic setting.

>:E>'

distinct layer types to 4. Layers 1 and 3 are both structurally of type o ®, and layers
2 and 4 are structurally of type ® . Layer 1, however, is preceded by a layer of type
e ®, whereas layer 3 is preceded by a layer of type ® o. Similarly, layer 2 is preceded
by type o ®, and type 4 is preceded by type ® @. In the hexagonal setting, the
stacking vectors are
R,, =R, =3}(2a+b+c),

R, =Ry =3(—2a—b+c),
Ry =Ry, =Ry =Ry, =ic.

The stacking transitions s, 0, gs, Xy %gys Ogg, Xy and @y, cannot occur, by
definition. The probability of a fault in an inherently cubic stacking sequence, a;,
( = a,,), and the probability of a fault in an inherently hexagonal stacking sequence,
ayy ( = ay,), need not be equal or correlated. When both are small, the material
comprises large blocks of unfaulted cubic and hexagonal stackings. However, when
both are close to unity, the faults tend to be uniformly distributed, with stacking
types tending to repel one another. When the sum of the two probabilities is close to
unity, the faulting resembles the random case presented above for diamond-
lonsdaleite. Figure 3 illustrates how these four layer types describe clustered
faulting in the FAU/bss system.

Figure 4 shows detailed comparisons between measurement and calculation for
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Figure 4. Comparison of synchrotron powder X-ray diffraction data (X10B NSLS) (a, ¢, ) and
calculation (b, d, f) for three different materials of the FAU-bss family. Instrumental peak
broadening was simulated using a pseudo-Voigt function with « = 0.1, v = —0.036, w = 0.009 and
¥ = 0.6. The step size for the simulations was A6 = 0.01°.

three specific materials. Figure 4a, b are for ECR-35, where the fit is for a,, = 0.85
and a,, = 0.6. Figure 4¢, d are for an ECR-30 material with «;;, = 0.2 and a,; = 0.8
(implying the faulting is essentially random). Figure 10e, f are for a material
synthesized using the 18 crown ether recipe of Delprato et al. (1990). The material
comprises mostly hexagonal (mirror) stackings. The best fit occurs for a,, = 0.06,
oy = 0.94 (implying the faulting is essentially random) and for a thickness of the
platelet crystallites along [001},,, of about 200 layers, which corresponds to about
0.35 pm.

3.2.2. Zeolite beta

Structurally, zeolite beta comprises one topologically distinct layer type, which
occurs in four distinct orientations in the crystal, each related by a +90° rotation
about a common ¢ axis. The two tetragonal (chiral) end member structures have
purely 4, (+90° with a ic shift) or 4, (—90° with a k¢ shift) stacking operations. When
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Figure 5. [100] view of the framework of a typical zeolite beta crystallite. Viewed along this
direction, only every other fault produces a detectable switch in the stacking direction. The
unobserved faults are stacking either into, or out of, the page.

we take into account possible structural distortions, and their influence over how
subsequent layers may stack, eight distinct layer types are required to describe a
system with a Reichweite of 1, where the handedness of the previous transition
influences the next transition. For convenience, we represent these eight layers here
by the symbols T—L _ and J._[—. These symbols represent the four mutually
rotated layers and their enantiomorphs. For end-member polymorph A (bea) with
space group P4,22, the four layers stack such that a layer of type 1 is followed by
a layer of type — (related to the first, through a +90° right-handed rotation),
followed by a layer of type L (again, related to the previous layer through a +90°
right-handed rotation) which in turn is followed by a type — layer. Thus, for a
perfect right-handed crystal, the stacking repeats in a T—L_l—L_ ... sequence.
Likewise, the left-handed enantiomorph, space group P4,22, will stack in the
sequence Jo_[—1_[—.... On the other hand, polymorph B (beb), space group
(02/c, can stack as 11T ..., or —Jl—l—1J..., etc. For proper connectivity,
layers cannot attach to other layers which are related by 0° or 180° rotations, i.e.
layers of structure type 1 cannot attach to layers of type 1 or L , only to layers of
type — or —. Similar restraints apply to all other layers. A typical faulted sequence
in zeolite beta is shown in projection in figure 5.

An alternative, more compact way of describing faults in zeolite beta would have
been to assume that the stacking sequence attempts to revert to a preferred left- or
right-handed sequence, such that errors in handedness tend to be corrected after the
fault. Thus, in the limit of zero faulting, the crystal is pure right-handed, and in the
limit of maximum faulting, the crystal comprises uninterrupted left-handed stacking.
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Figure 6. Montage of calculated powder pattern plots for zeolite beta as a function of stacking
probability. The probability here represents the chance that the stacking is part of a chiral
sequence, either left- or right-handed. This description requires a Reichweite of 1, i.e. that each
layer remembers how the previous layer stacked. Instrumental peak broadening was simulated
using a pseudo-Voigt function with v = 0.89, v = —0.32, w = 0.08 and y = 0.6. The step size was
A6 =0.01°.

This description requires only four distinct layers, which we label 1, 2, 3 and 4, and
which are topologically equivalent to the layer types 1—L and — (which are
assumed to be identical to layer types J__I and —). In this description, the crystal
is racemic only when the fault probability is 0.5.

Figure 6 shows a montage of simulated powder X-ray patterns for this system
ranging from fault densities of 0.0 (achiral beb) to 1.0 (chiral bea, although with equal
mixtures of left- and right-handed connected crystals). The fault probabilities follow

the relation _ _ _ _ _ _ _ _
O = 0lyg = Qgg = Ugq = Ayy = Azg = gy = Aqg = Kgy,

L= =0y = Qs = Qg = Ayy = Uy = Kgg = Qg = Agy.

The stacking vectors connecting the centroids of the basic repeat unit in each
layer, (described relative to the tetragonal cell of the bea polymorph) are

R, =Ry = Ry, = Ry = —3b+ic,
Ry; = Ry; = R, = Ry, = ja+ic,
Ry, =Ry =Ry, = Ry =3b+ic,
R, = Rgs = Ry, = Ry = —ja+ic.
Figure 7 shows a direct comparison between data and the best calculated fit. This
occurs for probability a = 0.44, and with unit cell dimension a = b=12.44 A, and

¢ = 26.41 A. This stacking probability is in good agreement with that obtained from
electron micrographs.

3.2.3. Intergrowths of zeolites ZSM-5 (MFI) and ZSM-11 (MEL)

ZSM-5 and ZSM-11, the end-members of the pentasil family of zeolites, like Breck’s
structure 6 (bss) and Faujasite (FAU), share a common building unit. As for the
FAU/bss system, in ZSM-5 (and FAU) consecutive layers are related by inversion
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Figure 7. Comparison of calculated powder X-ray diffraction spectrum with data for a typical
zeolite beta sample. The fit is best for @ = 0.44, implying that the left- and right-handed stacking
operations are near-random, with a slight bias toward the c-glide stacking operation (i.e. a
right-left-right...stacking sequence) rather than a 4, or 4; screw stacking operation (i.e.
right-right-right...or left-left-left... stacking sequences).

Layer type 1 Layer type 2
Layer type 3 Layer type 4
MFI MEL MFI/MEL Intergrowth

Figure 8. Diagram illustrating the frameworks and connectivities of the four layer types which may
occur in an intergrown MFI/MEL material. Note that all stacking vectors are equal in this
instance.

operations, whereas in ZSM-11 (and bss), consecutive layers are related through
mirror operations. Figure 8 shows in projection, the frameworks of the four layer
types necessary to fully describe the MFI/MEL system. All four layers are
topologically identical, but are oriented differently. Layers 1 and 2 are related by a
vertical mirror, whereas layers 1 and 3 are related by an inversion. Layers 2 and 4
are also related by an inversion.

Unlike the FAU/bss and the bea/beb examples, the stacking vectors between the
four layer types are identical in the ZSM-5/-11 system. Streaking in the diffraction
patterns arises purely from type disorder, with no contribution from position
disorder. The stacking vectors for both ZSM-5 and ZSM-11 are (0, 0, j¢), compared
with (+2a, +1b, ic) for the FAU system. The FAU stacking vectors have non-zero
lateral components, and therefore the stacking of mirror-related layers will require
a change in sign of these components. The ZSM-5/-11 stacking vectors have zero
lateral components, thus the stacking vectors for mirror-related layers are identical.

A consequence of there being type disorder only is that, relative to the FAU /bss,
and bea/beb systems, certain peaks lose intensity rapidly as a function of stacking
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Figure 9. Montage of calculated powder pattern plots for intergrowths of ZSM-5 and ZSM-11. Low
values of a correspond to pure ZSM-5 (MEL) and high a values correspond to pure ZSM-11 (MEL).
Because all stacking vectors are equal, there is no position disorder, only type disorder due to subtle
structural differences between layers. Note that there is little of the dramatic peak broadening that
occurs in the other systems where position disorder is present. However, peak intensities can
change rapidly, and are not a linear function of the fault probability. Instrumental peak
broadening was simulated using a pseudo-Voigt function with » = 0.1, » = —0.036, w = 0.009 and
v = 0.6. The step size was Af = 0.01°.

probability, and peak broadening tends to be subtle, as can be seen for the series of
powder X-ray diffraction patterns simulated over the range of fault probability
shown in figure 9. Of particular importance is the observation that peak intensities
do not vary linearly with the degree of disorder. All of the most marked changes to
peak intensities occur near a;; &% 0 and a,, & 0 for the pure MEL and MFI end
members.

4. Conclusions

The recursion model of diffraction provides a powerful, intuitive way of envisioning
the diffraction process from crystals, particularly from those containing defects. The
simplicity of the recursion algorithm has enabled the development of a general-
purpose computer program, DIFFaX, which can be used to calculate intensities from
any type of crystal system that contains any type of coherent planar defect.
DIFFaX has been used successfully on a wide variety of structure problems,
particularly zeolite systems. Powder X-ray diffraction patterns, simulated as a
function of stacking transition probabilities, provide a database against which
measured patterns can be compared, a facility that is already proving useful in
directing zeolite synthesis efforts.

The authors thank their colleagues Allan Jacobson, David Vaughan, Karl Strohmaier, Cees de
Gruyter and Steve Rice for numerous discussions, suggestions and samples during the development
of this work.
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Appendix A 1. Relationship between the recursion equations and the
Hendricks-Teller Equation ‘

The relation to the Hendricks—Teller equation can be established by expanding
equation (12) in m and rearranging
N-1
Iu) = (N—m) GV T"F+c.c.)—NG™F
m=0
N-1
= (N—m)GY*" T"F+c.c.)+NG™F, (A1)
m=1
where c.c. stands for complex conjugate.
Redefining our matrices as

(Hy» = 9,90 and (V)= F,Ff exp (—2mi(h(R,;— R ;) +k(R,,—R,;)),
equation (A 1) can be rewritten as

lw) = % (N—m)tr VHT" +c.c.)+ Ntr VH, (A 2)

m=1
where tr is the sum of the diagonal terms of a square matrix, sometimes referred to

as the spur. Equation (A 2) is the form of the Hendricks-Teller equation discussed
by Kakinoki & Tomura (1965) and Allegra (1961).

Appendix A 2. Relation between t?(recursion model and
the Cowley equation

The relation with Cowley’s solution (1976a) can be established by combining
equation (8) and equation (9) to form the nested series

I(u)

N - {2 9 F¥u) [Fi(u) +§“ii exp (—2miu- R;) [Fj(u)

[}

+ X oy exp (—2min- Ry,) [Fy(u) + Z oy exp (—2miu- Ry,) [Fy(u) + ... ]]]]
k !
+eoh—SglF W) (A3

If we isolate terms involving no faults, the R, transitions, from terms involving
faults, all other R,; transitions where 1 # j, we find that for a large number of layers,
N, the no fault terms can be collected and summed, as in
1+o, exp (—2miu- R;) +a¥exp (—4miu- Ry;)+ ... afjexp (—2nmiu- Ry) + ...

= 1/(1—oyexp (—2miu- R;))
and equation (A 3) becomes

1(u) 9. F7 (u) [ a; exp (—2miu- Ry))
{i 1—oy exp (—2miu- R;;) B+ 2 1 —a;exp (—2miu- Ry) Fytw)

i#]

o exp (—2miu- Ry,) [ oy, exp (—2miu- Ry,)
+ X L — Fu+ 3 - F(u)+...
j#kl—ak,cexp(—2mu‘Rkk) #() k#ll—a”exp(—anu'Rkk) k)
+eo)-SglRwP (44
i

Proc. R. Soc. Lond. A (1991)

111



518 M. M. J. Treacy, J. M. Newsam and M. W. Deem

which is Cowley’s equation (1976 a), with the substitution a;; = (1—2%;«;;). Although
this form is also recursive as the nested terms are similar, but begin on different
layers, it is less convenient to implement numerically than are equations (14) and
(17).

Appendix A 3. Relation to Michalski’s recurrence treatment

Michalski (1988) has independently pointed out that the stacking of layers in a
statistical crystal contains recurring patterns. Starting from the perspective of the
difference equation method developed by Holloway (1969), Michalski noted that there
exists a recurrence relation between the average phase factors from layers separated
by » spacings, and the average phase factors from layers separated by »— 1 spacings
(Michalski 1988, equation (18)). In terms of the nomenclature used here, where we
include the scattering amplitude from each layer, this is equivalent to noting that the
interference terms between layers separated by n» layers, ", and the interference
terms between layers separated by n—1 layers, "1, are related, i.e.

q)n = T"F = T(]"’L‘IF') = T(p”_l_ (A 5)

In this paper we develop this notion further by demonstrating that the average
interference terms from the whole crystal can also be expressed in recursive form.
The average interference terms from an N-layer crystal Y can be expressed in
terms of the @”-using equation (13)

) 1 N—-1N-m—1 1 N-1N-m-1 "
m=0 n=0 m=0 n=0

In Michalski’s treatment, N is assumed to be large, thus the recurrent terms ¢
build up the ensemble-average scattered wavefunction @

PN =@ = 3 o (A7)
n=0
As shown in equations (15) and (18), the Y™ (and the @) can themselves be
expressed in recursive form, which greatly simplifies the theory, as these quantities
can be used directly in equation (17) to provide the diffracted intensity.
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adaptive integration, 38
AXIAL, 12

beta, 62-74
binary files, 43
brick wall, 45

cell dimensions, 11
chiral stacking, 62
clustering

of faults, 55
compiling DIFFaX, 43
control file, 25, 40-42, 77-82
Cray, 44

data.sfc, 15, 25, 27, 36
Debye-Scherrer

peak broadening, 13, 4648
Debye-Waller

temperature factors, 16, 20, 52
DETUN, 50
detune, 37, 49-52
dia.dat, 82
dia.dmp, 28, 82-84
dia.sadp, 34
dia.spc, 86-87
dia.str, 30
dia.sym, 28, 84-86
diamond, 54-58
DIFFaX.f, 43, 49, 50
DIFFaX.inc, 43
DIFFaX.par, 43, 49
dump file, 27, 82

EXPLICIT stacking, 18

“Fats-Waller”
temperature factors, 20, 52
faujasite, 5862
files
binary, 43
control.dif, 25, 40-42, 77-82
data.sfc, 15, 25, 27, 36
DIFFaX.f, 43, 49, 50
DIFFaX.inc, 43
DIFFaX.par, 43, 49
dump, 18, 27, 42, 82-84
naming conventions, 42
selected area diffraction, 31, 42
spectrum, 42
streak, 29, 42
structure data, 225, 54-77
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symmetry, 28, 42, 84-86
Friedel’s law, 11, 12
full-width half-maximum, 7

FWHM, see full-width half-maximum

GaAlAs, 74-77

GaAs, 74-77

GaAs/GaAlAs, 74-77
Gauss-Legendre integration, 38

GAUSSIAN, instrumental broadening, 7, 40

headers
INSTRUMENTAL, 6
STACKING, 18
STRUCTURAL, 11
TRANSITIONS, 19

Image program, 34
INFINITE
layer width, 13, 48
number of layers, 19
INSTRUMENTAL, 6
instrumental broadening, 7
GAUSSIAN, 7, 40
LORENTZIAN, 8, 40
NONE, 7, 9
PSEUDO-VOIGT, 9, 40
parameters
w,v,w, 7-9
0,9
integrated intensity, 30
intensity
along a streak, 29
at a point, 28
integrated, 30
powder pattern, 34
selected area diffraction, 31

Laue symmetry, 11
layer
atom data, 14
finite width, 13, 46
infinite width, 13, 48
Ssymimetry
CENTROSYMMETRIC, 14, 40
NONE, 14
types, number of, 13
widths, 13, 48
lonsdaleite, 33, 54, 55

LORENTZIAN, instrumental broadening, 8, 40

MacDIFFaX, 25, 27, 36-37



main menu, 28

NONE
instrumental broadening, 7, 9
layer symmetry, 14

point intensity, 28

Poisson ratio, 74

powder pattern, 34

precision, 44

PSEUDO-VOIGT, instrumental broadening, 9, 40

radiation wavelength, 6
RANDOM stacking, 18
recursion, 45
RECURSIVE stacking, 18
references, 52
Reichweite, 23, 55, 63
reprint, 93

saveall, compiler option, 44
selected area diffraction, 31
shape broadening, Debye-Scherrer, 13, 4648
o, instrumental broadening parameter, 9
STACKING, 18
streak
file, 29
streak intensity, 29
STRUCTURAL, 11
superlattice
GaAs/GaAlAs, 74-77
symmetry
CENTROSYMMETRIC, 14, 40
NONE, 14
UNKNOWN, 23
AXIAL, 12
file, 28

temperature factors
Debye-Waller, 20, 52
“Fats-Waller”, 20, 52

TRANSITIONS, 19

TRINM, 10, 35

u, instrumental broadening parameter, 7-9
UNKNOWN, symmetry, 23

v, instrumental broadening parameter, 7-9

w, instrumental broadening parameter, 7-9
wavelength
radiation, 6

zeolite
beta, 62-74
faujasite, 5862
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